Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753508

RESUMO

As the core component of the adherens junction in cell-cell adhesion, the cadherin-catenin complex transduces mechanical tension between neighboring cells. Structural studies have shown that the cadherin-catenin complex exists as an ensemble of flexible conformations, with the actin-binding domain (ABD) of α-catenin adopting a variety of configurations. Here, we have determined the nanoscale protein domain dynamics of the cadherin-catenin complex using neutron spin echo spectroscopy (NSE), selective deuteration, and theoretical physics analyses. NSE reveals that, in the cadherin-catenin complex, the motion of the entire ABD becomes activated on nanosecond to submicrosecond timescales. By contrast, in the α-catenin homodimer, only the smaller disordered C-terminal tail of ABD is moving. Molecular dynamics (MD) simulations also show increased mobility of ABD in the cadherin-catenin complex, compared to the α-catenin homodimer. Biased MD simulations further reveal that the applied external forces promote the transition of ABD in the cadherin-catenin complex from an ensemble of diverse conformational states to specific states that resemble the actin-bound structure. The activated motion and an ensemble of flexible configurations of the mechanosensory ABD suggest the formation of an entropic trap in the cadherin-catenin complex, serving as negative allosteric regulation that impedes the complex from binding to actin under zero force. Mechanical tension facilitates the reduction in dynamics and narrows the conformational ensemble of ABD to specific configurations that are well suited to bind F-actin. Our results provide a protein dynamics and entropic explanation for the observed force-sensitive binding behavior of a mechanosensitive protein complex.


Assuntos
Caderinas/química , Cateninas/química , Sítios de Ligação , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Movimento (Física) , Nêutrons , Domínios Proteicos
2.
J Chem Phys ; 158(18)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37154281

RESUMO

By using time-of-flight neutron spectroscopy with polarization analysis, we have separated coherent and incoherent contributions to the scattering of deuterated tetrahydrofuran in a wide scattering vector (Q)-range from meso- to inter-molecular length scales. The results are compared with those recently reported for water to address the influence of the nature of inter-molecular interactions (van der Waals vs hydrogen bond) on the dynamics. The phenomenology found is qualitatively similar in both systems. Both collective and self-scattering functions are satisfactorily described in terms of a convolution model that considers vibrations, diffusion, and a Q-independent mode. We observe a crossover in the structural relaxation from being dominated by the Q-independent mode at the mesoscale to being dominated by diffusion at inter-molecular length scales. The characteristic time of the Q-independent mode is the same for collective and self-motions and, contrary to water, faster and with a lower activation energy (≈1.4 Kcal/mol) than the structural relaxation time at inter-molecular length scales. This follows the macroscopic viscosity behavior. The collective diffusive time is well described by the de Gennes narrowing relation proposed for simple monoatomic liquids in a wide Q-range entering the intermediate length scales, in contraposition to the case of water.

3.
J Chem Phys ; 158(12): 124502, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37003746

RESUMO

A new class of electrolytes have been reported, hybridizing aqueous with non-aqueous solvents, which combines non-flammability and non-toxicity characteristics of aqueous electrolytes with the superior electrochemical stability of non-aqueous systems. Here, we report measurements of the structure of an electrolyte composed of an equal-mass mixture of 21 m LiTFSI-water and 9 m LiTFSI-dimethyl carbonate using high-energy x-ray diffraction and polarized neutron diffraction with isotope substitution. Neutron structure factors from partially and fully deuterated samples exhibit peaks at low scattering vector Q that we ascribe to long-range correlations involving both solvent molecules and TFSI- anions. We compare both sets of measurements with results of molecular dynamics simulations based on a polarizable force field. The structures derived from simulations are generally in agreement with those measured, except that neutron structure factors predicted for two partially deuterated samples show very intense scattering increasing up to the low-Q limit of simulation, indicating a partial segregation between the two solvents not observed in experimental measurements.

4.
Biophys J ; 119(12): 2483-2496, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189682

RESUMO

We present a multiscale characterization of aqueous solutions of the bovine eye lens protein ßH crystallin from dilute conditions up to dynamical arrest, combining dynamic light scattering, small-angle x-ray scattering, tracer-based microrheology, and neutron spin echo spectroscopy. We obtain a comprehensive explanation of the observed experimental signatures from a model of polydisperse hard spheres with additional weak attraction. In particular, the model predictions quantitatively describe the multiscale dynamical results from microscopic nanometer cage diffusion over mesoscopic micrometer gradient diffusion up to macroscopic viscosity. Based on a comparative discussion with results from other crystallin proteins, we suggest an interesting common pathway for dynamical arrest in all crystallin proteins, with potential implications for the understanding of crowding effects in the eye lens.


Assuntos
Cristalino , beta-Cristalinas , Animais , Bovinos , Difusão , Proteínas , Viscosidade
5.
Biophys J ; 115(4): 642-654, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30037495

RESUMO

As a core component of the adherens junction, α-catenin stabilizes the cadherin/catenin complexes to the actin cytoskeleton for the mechanical coupling of cell-cell adhesion. α-catenin also modulates actin dynamics, cell polarity, and cell-migration functions that are independent of the adherens junction. We have determined the solution structures of the α-catenin monomer and dimer using in-line size-exclusion chromatography small-angle X-ray scattering, as well as the structure of α-catenin dimer in complex to F-actin filament using selective deuteration and contrast-matching small angle neutron scattering. We further present the first observation, to our knowledge, of the nanoscale dynamics of α-catenin by neutron spin-echo spectroscopy, which explicitly reveals the mobile regions of α-catenin that are crucial for binding to F-actin. In solution, the α-catenin monomer is more expanded than either protomer shown in the crystal structure dimer, with the vinculin-binding M fragment and the actin-binding domain being able to adopt different configurations. The α-catenin dimer in solution is also significantly more expanded than the dimer crystal structure, with fewer interdomain and intersubunit contacts than the crystal structure. When in complex to F-actin, the α-catenin dimer has an even more open and extended conformation than in solution, with the actin-binding domain further separated from the main body of the dimer. The α-catenin-assembled F-actin bundle develops into an ordered filament packing arrangement at increasing α-catenin/F-actin molar ratios. Together, the structural and dynamic studies reveal that α-catenin possesses dynamic molecular conformations that prime this protein to function as a mechanosensor protein.


Assuntos
Actinas/metabolismo , Nanotecnologia , alfa Catenina/química , alfa Catenina/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Soluções
6.
Soft Matter ; 14(8): 1482-1491, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29400392

RESUMO

Small-angle neutron scattering (SANS) and neutron spin-echo (NSE) have been used to investigate the temperature-dependent solution behaviour of highly-branched poly(N-isopropylacrylamide) (HB-PNIPAM). SANS experiments have shown that water is a good solvent for both HB-PNIPAM and a linear PNIPAM control at low temperatures where the small angle scattering is described by a single correlation length model. Increasing the temperature leads to a gradual collapse of HB-PNIPAM until above the lower critical solution temperature (LCST), at which point aggregation occurs, forming disperse spherical particles of up to 60 nm in diameter, independent of the degree of branching. However, SANS from linear PNIPAM above the LCST is described by a model that combines particulate structure and a contribution from solvated chains. NSE was used to study the internal and translational solution dynamics of HB-PNIPAM chains below the LCST. Internal HB-PNIPAM dynamics is described well by the Rouse model for non-entangled chains.

7.
J Chem Phys ; 148(10): 104901, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29544308

RESUMO

In this paper, we investigate the dynamics of small unilamellar vesicles with the aid of neutron spin-echo spectroscopy. The purpose of this investigation is twofold. On the one hand, we investigate the influence of solubilised cosurfactant on the dynamics of the vesicle's surfactant bilayer. On the other hand, the small unilamellar vesicles used here have a size between larger vesicles, with dynamics being well described by the Zilman-Granek model and smaller microemulsion droplets which can be described by the Milner-Safran model. Therefore, we want to elucidate the question, which model is more suitable for the description of the membrane dynamics of small vesicles, where the finite curvature of the bilayer is felt by the contained amphiphilic molecules. This question is of substantial relevance for our understanding of membranes and how their dynamics is affected by curvature, a problem that is also of key importance in a number of biological questions. Our results indicate the even down to vesicle radii of 20 nm the Zilman-Granek model appears to be the more suitable one.

8.
J Chem Phys ; 145(12): 124901, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27782635

RESUMO

Oppositely charged polyelectrolyte (PE) surfactant mixtures can self-assemble into a large variety of mesoscopic structures, so-called polyelectrolyte surfactant complexes (PESCs). These structures directly affect the macroscopic behavior of such solutions. In this study, we investigated mixtures of the cationically charged PE JR 400 and the anionic surfactant SDS with the help of different neutron scattering and fluorescence methods. While an excess of PE charges in semi-dilute solutions causes an increase of viscosity, it has been observed that an excess of surfactant charges reduces the viscosity while precipitation is observed at charge equilibrium. The increase in viscosity had been investigated before and was attributed to the formation of cross links between PE chains. In this publication we focus our attention on the reduction of viscosity which is observed with an excess of surfactant charges. It is found that the PE chains form relatively large and densely packed clusters near the phase boundary on the surfactant rich side, thereby occupying less space and reducing the viscosity. For even higher surfactant concentrations, individual surfactant decorated PE chains are observed and their viscosity is found to be similar to that of the pure PE.

9.
Biochim Biophys Acta ; 1838(10): 2412-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24950248

RESUMO

We report a combined dynamic light scattering (DLS) and neutron spin-echo (NSE) study on the local bilayer undulation dynamics of phospholipid vesicles composed of 1,2-dimyristoyl-glycero-3-phosphatidylcholine (DMPC) under the influence of temperature and the additives cholesterol and trehalose. The additives affect vesicle size and self-diffusion. Mechanical properties of the membrane and corresponding bilayer undulations are tuned by changing lipid headgroup or acyl chain properties through temperature or composition. On the local length scale, changes at the lipid headgroup influence the bilayer bending rigidity κ less than changes at the lipid acyl chain: We observe a bilayer softening around the main phase transition temperature Tm of the single lipid system, and stiffening when more cholesterol is added, in concordance with literature. Surprisingly, no effect on the mechanical properties of the vesicles is observed upon the addition of trehalose.


Assuntos
Colesterol/química , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Trealose/química
10.
Soft Matter ; 11(3): 466-71, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25406421

RESUMO

The aging dynamics of a colloidal glass has been studied by multiangle dynamic light scattering, neutron spin echo, X-ray photon correlation spectroscopy and molecular dynamics simulations. The two relaxation processes, microscopic (fast) and structural (slow), have been investigated in an unprecedentedly wide range of time and length scales covering both ergodic and nonergodic regimes. The microscopic relaxation time remains diffusive at all length scales across the glass transition scaling with wavevector Q as Q(-2). The length-scale dependence of structural relaxation time changes from diffusive, characterized by a Q(-2)-dependence in the early stages of aging, to a Q(-1)-dependence in the full aging regime which marks a discontinuous hopping dynamics. Both regimes are associated with a stretched behaviour of the correlation functions. We expect these findings to provide a general description of both relaxations across the glass transition.

11.
J Chem Phys ; 143(7): 074902, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26298151

RESUMO

Oppositely charged polyelectrolyte (PE) surfactant mixtures allow the control of rheological parameters of a solution even at fairly low concentrations. For example, addition of 0.3 wt. % of anionic surfactant to a 1 wt. % solution of the polycation JR 400 increases the viscosity by 4 orders of magnitude. Recently, we could show that this increase is related to the formation of mixed, rod-like PE/surfactant aggregates which interconnect several polyelectrolyte chains [Hoffmann et al., Europhys. Lett. 104, 28001 (2013)]. In this paper, we refine our structural model of the aggregates to obtain a more consistent picture of their internal structure for different anionic surfactants. Combining small angle neutron scattering (SANS) and neutron spin-echo (NSE) allows us to determine the size of the aggregates. By comparing different contrasts, the internal structure of the aggregates can be elucidated and it is seen that the PE in the aggregates retains a relatively high freedom of movement. We proceeded to investigate the influence of the surfactant concentration and the surfactant type on structure and dynamics of the mixed aggregates. It is seen that the structural parameters of the aggregates depend very little on the surfactant concentration and headgroup. However, it is crucial to incorporate a sufficient amount of PE in the aggregates to increase the viscosity of the aggregates. By comparing viscous samples at 1 wt. % PE concentration with samples at a PE concentration of 0.3 wt. %, where no significant increase in viscosity is observed, we find that similar aggregates are formed already at this lower PE concentrations. However, the amount of PE incorporated in them is insufficient to interconnect several PE chains and therefore, they do not increase viscosity. So, our detailed investigation combining contrast variation SANS and NSE does not only allow to explain the viscosity behavior but also to deduced detailed information regarding the structures and the dynamics especially of the polyelectrolyte within the complexes.

12.
Soft Matter ; 10(20): 3649-55, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24667976

RESUMO

We present a neutron scattering analysis of the structure and dynamics of PEO polymer rings with a molecular weight 2.5 times higher than the entanglement mass. The melt structure was found to be more compact than a Gaussian model would suggest. With increasing time the center of mass (c.o.m.) diffusion undergoes a transition from sub-diffusive to diffusive behavior. The transition time agrees well with the decorrelation time predicted by a mode coupling approach. As a novel feature well pronounced non-Gaussian behavior of the c.o.m. diffusion was found that shows surprising analogies to the cage effect known from glassy systems. Finally, the longest wavelength Rouse modes are suppressed possibly as a consequence of an onset of lattice animal features as hypothesized in theoretical approaches.


Assuntos
Polietilenoglicóis/química , Difusão , Espectroscopia de Ressonância Magnética , Difração de Nêutrons , Espalhamento a Baixo Ângulo
13.
Eur Phys J E Soft Matter ; 36(7): 76, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23884624

RESUMO

Recent studies show that neutron spin echo spectroscopy (NSE) can reveal long-range protein domain motions on nanometer lengthscales and on nanosecond to microsecond timescales. This unique capability of NSE provides new opportunities to understand protein dynamics and functions, such as how binding signals are propagated in a protein to distal sites. Here we review our applications of NSE to the study of nanoscale protein domain motions in a set of cell signaling proteins. We summarize the theoretical framework we have developed, which allows one to interpret the NSE data (Biophys. J. 99, 3473 (2010) and Proc. Natl. Acad. Sci. USA 102, 17646 (2005)). Our theoretical framework uses simple concepts from nonequilibrium statistical mechanics, and does not require elaborate molecular dynamics simulations, complex fits to rotational motion, or elastic network models. It is thus more robust than multiparameter techniques that require untestable assumptions. We also demonstrate our experimental scheme involving deuterium labeling of a protein domain or a subunit in a protein complex. We show that our selective deuteration scheme can highlight and resolve specific domain dynamics from the abundant global translational and rotational motions in a protein. Our approach thus clears significant hurdles to the application of NSE for the study of protein dynamics in solution.


Assuntos
Simulação de Dinâmica Molecular , Difração de Nêutrons/métodos , Animais , Fosfoproteínas/química , Ligação Proteica , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Trocadores de Sódio-Hidrogênio/química
14.
Eur Phys J E Soft Matter ; 36(7): 74, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23852578

RESUMO

While the steady-state existence in the size and shape of liquid-ordered microdomains in cell membranes, the so-called "lipid rafts", still remain the subject of debate, glycosphingolipid-cholesterol rich regions in plasma membranes have been considered to have a function as platforms for signaling and sorting. In addition, recent spectroscopic studies show that the interaction between monosialoganglioside and amyloid beta (Aß protein promotes the transition of Aß from the native structure to the cross-beta fold in amyloid aggregates. However, there is few evidence on the dynamics of "lipid rafts" membranes. As the neutron spin-echo (NSE) technique is well known to detect directly slow dynamics of membrane systems in situ, by the combination of NSE and small-angle X-ray scattering we have studied the effect of the interaction between raft-model membrane and amyloid Aß proteins on the structure and dynamics of a large uni-lamellar vesicle (LUV) consisting of monosialoganglioside-cholesterol-phospholipid ternary mixtures as a model of lipid-raft membrane. We have found that the interaction between the Aß proteins and the model membrane at the liquid crystal phase significantly suppresses a bending-diffusion motion with a minor effect on the LUV structure. The present results would suggest a possibility of non-receptor-mediated disorder in signaling through a modulation of a membrane dynamics induced by the association of amyloidogenic peptides on a plasma membrane.


Assuntos
Peptídeos beta-Amiloides/química , Microdomínios da Membrana/química , Peptídeos beta-Amiloides/metabolismo , Colesterol/química , Gangliosídeo G(M1)/química , Microdomínios da Membrana/metabolismo , Ligação Proteica , Espalhamento a Baixo Ângulo , Lipossomas Unilamelares/química , Difração de Raios X
15.
Elife ; 122023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37314846

RESUMO

Guanylate binding proteins (GBPs) are soluble dynamin-like proteins that undergo a conformational transition for GTP-controlled oligomerization and disrupt membranes of intracellular parasites to exert their function as part of the innate immune system of mammalian cells. We apply neutron spin echo, X-ray scattering, fluorescence, and EPR spectroscopy as techniques for integrative dynamic structural biology to study the structural basis and mechanism of conformational transitions in the human GBP1 (hGBP1). We mapped hGBP1's essential dynamics from nanoseconds to milliseconds by motional spectra of sub-domains. We find a GTP-independent flexibility of the C-terminal effector domain in the µs-regime and resolve structures of two distinct conformers essential for an opening of hGBP1 like a pocket knife and for oligomerization. Our results on hGBP1's conformational heterogeneity and dynamics (intrinsic flexibility) deepen our molecular understanding relevant for its reversible oligomerization, GTP-triggered association of the GTPase-domains and assembly-dependent GTP-hydrolysis.


Assuntos
GTP Fosfo-Hidrolases , Proteínas de Ligação ao GTP , Animais , Humanos , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Hidrólise , Guanosina Trifosfato/metabolismo , Biologia , Mamíferos/metabolismo
16.
Phys Rev Lett ; 109(5): 058102, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-23006210

RESUMO

Thickness fluctuations have long been predicted in biological membranes but never directly observed experimentally. Here, we utilize neutron spin echo spectroscopy to experimentally reveal such fluctuations in a pure, fully saturated, phosphocholine lipid bilayer system. These fluctuations appear as an excess in the dynamics of undulation fluctuations. Like the bending rigidity, the thickness fluctuations change dramatically as the lipid transition temperature is crossed, appearing to be completely suppressed below the transition. Above the transition, the relaxation rate is on the order of 100 ns and is independent of temperature. The amplitude of the thickness fluctuations is 3.7 Å ± 0.7 Å, which agrees well with theoretical calculations and molecular dynamics simulations. The dependence of the fluctuations on lipid tail lengths is also investigated and determined to be minimal in the range of 14 to 18 carbon tails.


Assuntos
Bicamadas Lipídicas/química , Membranas Artificiais , Membranas/química , Simulação de Dinâmica Molecular , Difração de Nêutrons/métodos , Transição de Fase , Fosfatidilcolinas/química , Espalhamento a Baixo Ângulo
17.
Biophys J ; 99(10): 3473-82, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21081097

RESUMO

NHERF1 is a multidomain scaffolding protein that assembles signaling complexes, and regulates the cell surface expression and endocytic recycling of a variety of membrane proteins. The ability of the two PDZ domains in NHERF1 to assemble protein complexes is allosterically modulated by the membrane-cytoskeleton linker protein ezrin, whose binding site is located as far as 110 Ångstroms away from the PDZ domains. Here, using neutron spin echo (NSE) spectroscopy, selective deuterium labeling, and theoretical analyses, we reveal the activation of interdomain motion in NHERF1 on nanometer length-scales and on submicrosecond timescales upon forming a complex with ezrin. We show that a much-simplified coarse-grained model suffices to describe interdomain motion of a multidomain protein or protein complex. We expect that future NSE experiments will benefit by exploiting our approach of selective deuteration to resolve the specific domain motions of interest from a plethora of global translational and rotational motions. Our results demonstrate that the dynamic propagation of allosteric signals to distal sites involves changes in long-range coupled domain motions on submicrosecond timescales, and that these coupled motions can be distinguished and characterized by NSE.


Assuntos
Sítio Alostérico , Movimento (Física) , Nanopartículas/química , Nêutrons , Tamanho da Partícula , Fosfoproteínas/química , Trocadores de Sódio-Hidrogênio/química , Análise Espectral/métodos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína
18.
ACS Macro Lett ; 9(6): 910-916, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35648525

RESUMO

The segmental dynamics of styrene-butadiene nanocomposites with embedded silica nanoparticles (NPs, ca. 20 vol. %) has been studied by broadband dielectric (BDS) and neutron spin-echo spectroscopy (NSE). It is shown by BDS that overlapping contributions only allow us to conclude on a range of distributions of relaxation times in simplified industrial nanocomposites formed with highly polydisperse NPs. For comparison, structurally similar but less aggregated colloidal nanocomposites have a well-defined distribution of relaxation times due to the reduced influence of interfacial polarization processes. This distribution is widened with respect to the neat polymer, without change in the position of the maximum and at most a small slowing down visible in the average time. We then demonstrate that incoherent NSE can be used to resolve small modifications of segmental dynamics of the industrial samples. By carefully choosing the q-vector of the measurement, experiments with fully hydrogenated polymer give access to the self-dynamics of the polymer in the presence of silica on the scale of approximately 1 nm. Our high-resolution measurements show that the segmental motion is slightly but systematically slowed also by the presence of the industrial filler NPs.

19.
Struct Dyn ; 7(5): 054704, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33094128

RESUMO

Like many soft materials, lipids undergo a melting transition associated with a significant increase in their dynamics. At temperatures below the main melting transition (Tm ), all molecular and collective dynamics are suppressed, while above Tm the alkyl tail motions, lipid diffusivity, and collective membrane undulations are at least an order of magnitude faster. Here we study the collective dynamics of dimyristoylphosphatidylglycerol (DMPG, di 14:0 PG) using neutron spin echo spectroscopy throughout its anomalous phase transition that occurs over a 12 °C-20° C wide temperature window. Our results reveal that the membranes are softer and more dynamic during the phase transition than at higher temperatures corresponding to the fluid phase and provide direct experimental evidence for the predicted increase in membrane fluctuations during lipid melting. These results provide new insights into the nanoscale lipid membrane dynamics during the melting transition and demonstrate how these dynamics are coupled to changes in the membrane structure.

20.
Biophys J ; 96(9): 3629-37, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19413968

RESUMO

In this study, the center-of-mass diffusion and shape fluctuations of large unilamellar 1-palmitoyl-2-oleyl-sn-glycero-phosphatidylcholine vesicles prepared by extrusion are studied by means of neutron spin echo in combination with dynamic light scattering. The intermediate scattering functions were measured for several different values of the momentum transfer, q, and for different cholesterol contents in the membrane. The combined analysis of neutron spin echo and dynamic light scattering data allows calculation of the bending elastic constant, kappa, of the vesicle bilayer. A stiffening effect monitored as an increase of kappa with increasing cholesterol molar ratio is demonstrated by these measurements.


Assuntos
Colesterol/metabolismo , Fluidez de Membrana/fisiologia , Lipossomas Unilamelares/metabolismo , Algoritmos , Elasticidade , Luz , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Espalhamento de Radiação , Termodinâmica , Lipossomas Unilamelares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA