Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mutat ; 42(1): 89-101, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33252156

RESUMO

Skeletal dysplasias are a heterogeneous group of disorders ranging from mild to lethal skeletal defects. We investigated two unrelated families with individuals presenting with a severe skeletal disorder. In family NMD02, affected individuals had a dysostosis multiplex-like skeletal dysplasia and severe short stature (<-8.5 SD). They manifested increasingly coarse facial features, protruding abdomens, and progressive skeletal changes, reminiscent of mucopolysaccharidosis. The patients gradually lost mobility and the two oldest affected individuals died in their twenties. The affected child in family ID01 had coarse facial features and severe skeletal dysplasia with clinical features similar to mucopolysaccharidosis. She had short stature, craniosynostosis, kyphoscoliosis, and hip-joint subluxation. She died at the age of 5 years. Whole-exome sequencing identified two homozygous variants c.133C>T; p.(Arg45Trp) and c.215dupA; p.(Tyr72Ter), respectively, in the two families, affecting an evolutionary conserved gene TMEM251 (NM_001098621.1). Immunofluorescence and confocal studies using human osteosarcoma cells indicated that TMEM251 is localized to the Golgi complex. However, p.Arg45Trp mutant TMEM251 protein was targeted less efficiently and the localization was punctate. Tmem251 knockdown by small interfering RNA induced dedifferentiation of rat primary chondrocytes. Our work implicates TMEM251 in the pathogenesis of a novel disorder and suggests its potential function in chondrocyte differentiation.


Assuntos
Nanismo , Proteínas de Membrana , Osteocondrodisplasias , Animais , Feminino , Humanos , Ratos , Nanismo/genética , Sequenciamento do Exoma , Homozigoto , Proteínas de Membrana/genética , Osteocondrodisplasias/genética , Linhagem
2.
J Inherit Metab Dis ; 43(4): 871-879, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32049367

RESUMO

Pathogenic variants in the Golgi localised alpha 1,6 fucosyltransferase, FUT8, cause a rare inherited metabolic disorder known as FUT8-CDG. To date, only three affected individuals have been reported presenting with a constellation of symptoms including intrauterine growth restriction, severe delays in growth and development, other neurological impairments, significantly shortened limbs, respiratory complications, and shortened lifespan. Here, we report an additional four unrelated affected individuals homozygous for novel pathogenic variants in FUT8. Analysis of serum N-glycans revealed a complete lack of core fucosylation, an important diagnostic biomarker of FUT8-CDG. Our data expands both the molecular and clinical phenotypes of FUT8-CDG and highlights the importance of identifying a reliable biomarker for confirming potentially pathogenic variants.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Fucose/metabolismo , Fucosiltransferases/genética , Polissacarídeos/metabolismo , Defeitos Congênitos da Glicosilação/metabolismo , Feminino , Fucosiltransferases/deficiência , Humanos , Masculino , Espectrometria de Massas , Fenótipo , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA