Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Development ; 150(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36633189

RESUMO

Adult neurogenesis is supported by multipotent neural stem cells (NSCs) with unique properties and growth requirements. Adult NSCs constitute a reversibly quiescent cell population that can be activated by extracellular signals from the microenvironment in which they reside in vivo. Although genomic imprinting plays a role in adult neurogenesis through dose regulation of some relevant signals, the roles of many imprinted genes in the process remain elusive. Insulin-like growth factor 2 (IGF2) is encoded by an imprinted gene that contributes to NSC maintenance in the adult subventricular zone through a biallelic expression in only the vascular compartment. We show here that IGF2 additionally promotes terminal differentiation of NSCs into astrocytes, neurons and oligodendrocytes by inducing the expression of the maternally expressed gene cyclin-dependent kinase inhibitor 1c (Cdkn1c), encoding the cell cycle inhibitor p57. Using intraventricular infusion of recombinant IGF2 in a conditional mutant strain with Cdkn1c-deficient NSCs, we confirm that p57 partially mediates the differentiation effects of IGF2 in NSCs and that this occurs independently of its role in cell-cycle progression, balancing the relationship between astrogliogenesis, neurogenesis and oligodendrogenesis.


Assuntos
Inibidor de Quinase Dependente de Ciclina p57 , Impressão Genômica , Fator de Crescimento Insulin-Like II , Células-Tronco Neurais , Neurogênese , Neurônios , Inibidor de Quinase Dependente de Ciclina p57/genética , Células-Tronco Neurais/citologia , Neurônios/citologia , Neurogênese/genética , Fator de Crescimento Insulin-Like II/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL
2.
Oncologist ; 29(5): 377-383, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38438322

RESUMO

Adult medulloblastoma (MB) is a rare disease affecting 0.6 persons per million adults over 19 years of age. The SHH-activated/TP53-wild type is the most common subtype, accounting for 60% of adult MBs, being characterized by mutations in PTCH1, SMO, or the TERT promoter. Several small studies demonstrate objective but short-lived responses to SMO inhibitors such as vismodegib or sonidegib. Like other oncogene-addicted solid tumors, detection of the corresponding drivers through liquid biopsy could aid in the molecular diagnosis and monitoring of the disease through less invasive procedures. However, most studies have only evaluated cerebrospinal fluid as the ctDNA reservoir, and very limited evidence exists on the role of liquid biopsy in plasma in patients with primary central nervous system tumors, including MB. We present the case of a 26-year-old patient with a recurrent MB, in which next-generation sequencing (FoundationOne CDx) revealed a mutation in PTCH1, allowing the patient to be treated with vismodegib in second line, resulting in a durable benefit lasting for 1 year. Using an in-house digital PCR probe, the PTCH1 mutation could be tracked in ctDNA during treatment with first-line chemotherapy and while on treatment with vismodegib, demonstrating a precise correlation with the radiological and clinical behavior of the disease.


Assuntos
Anilidas , DNA Tumoral Circulante , Meduloblastoma , Mutação , Receptor Patched-1 , Piridinas , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/sangue , Meduloblastoma/patologia , Piridinas/uso terapêutico , Receptor Patched-1/genética , Adulto , Anilidas/uso terapêutico , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/sangue , Masculino , Feminino
3.
Cell Mol Life Sci ; 80(1): 36, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36627412

RESUMO

Cell differentiation involves profound changes in global gene expression that often has to occur in coordination with cell cycle exit. Because cyclin-dependent kinase inhibitor p27 reportedly regulates proliferation of neural progenitor cells in the subependymal neurogenic niche of the adult mouse brain, but can also have effects on gene expression, we decided to molecularly analyze its role in adult neurogenesis and oligodendrogenesis. At the cell level, we show that p27 restricts residual cyclin-dependent kinase activity after mitogen withdrawal to antagonize cycling, but it is not essential for cell cycle exit. By integrating genome-wide gene expression and chromatin accessibility data, we find that p27 is coincidentally necessary to repress many genes involved in the transit from multipotentiality to differentiation, including those coding for neural progenitor transcription factors SOX2, OLIG2 and ASCL1. Our data reveal both a direct association of p27 with regulatory sequences in the three genes and an additional hierarchical relationship where p27 repression of Sox2 leads to reduced levels of its downstream targets Olig2 and Ascl1. In vivo, p27 is also required for the regulation of the proper level of SOX2 necessary for neuroblasts and oligodendroglial progenitor cells to timely exit cell cycle in a lineage-dependent manner.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27 , Neurogênese , Fatores de Transcrição SOXB1 , Animais , Camundongos , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Divisão Celular , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Expressão Gênica , Neurogênese/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(49): 31448-31458, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229571

RESUMO

Adult neural stem cells (NSC) serve as a reservoir for brain plasticity and origin for certain gliomas. Lineage tracing and genomic approaches have portrayed complex underlying heterogeneity within the major anatomical location for NSC, the subventricular zone (SVZ). To gain a comprehensive profile of NSC heterogeneity, we utilized a well-validated stem/progenitor-specific reporter transgene in concert with single-cell RNA sequencing to achieve unbiased analysis of SVZ cells from infancy to advanced age. The magnitude and high specificity of the resulting transcriptional datasets allow precise identification of the varied cell types embedded in the SVZ including specialized parenchymal cells (neurons, glia, microglia) and noncentral nervous system cells (endothelial, immune). Initial mining of the data delineates four quiescent NSC and three progenitor-cell subpopulations formed in a linear progression. Further evidence indicates that distinct stem and progenitor populations reside in different regions of the SVZ. As stem/progenitor populations progress from neonatal to advanced age, they acquire a deficiency in transition from quiescence to proliferation. Further data mining identifies stage-specific biological processes, transcription factor networks, and cell-surface markers for investigation of cellular identities, lineage relationships, and key regulatory pathways in adult NSC maintenance and neurogenesis.


Assuntos
Envelhecimento/genética , Linhagem da Célula , Ventrículos Laterais/anatomia & histologia , Ventrículos Laterais/citologia , Nicho de Células-Tronco/genética , Transcriptoma/genética , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem da Célula/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Transgenes
5.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958781

RESUMO

The protein kinase C (PKC) family plays important regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whereas in mammals, the PKC family comprises nine isoforms. Both Pkc1 and the novel isoform PKCδ are involved in the control of DNA integrity checkpoint activation, demonstrating that this mechanism is conserved from yeast to mammals. To explore the function of PKCδ in a non-tumor cell line, we employed CRISPR-Cas9 technology to obtain PKCδ knocked-out mouse embryonic stem cells (mESCs). This model demonstrated that the absence of PKCδ reduced the activation of the effector kinase CHK1, although it suggested that other isoform(s) might contribute to this function. Therefore, we used yeast to study the ability of each single PKC isoform to activate the DNA integrity checkpoint. Our analysis identified that PKCθ, the closest isoform to PKCδ, was also able to perform this function, although with less efficiency. Then, by generating truncated and mutant versions in key residues, we uncovered differences between the activation mechanisms of PKCδ and PKCθ and identified their essential domains. Our work strongly supports the role of PKC as a key player in the DNA integrity checkpoint pathway and highlights the advantages of combining distinct research models.


Assuntos
Proteína Quinase C , Saccharomyces cerevisiae , Animais , Camundongos , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Mamíferos/metabolismo , DNA , Proteína Quinase C-delta/genética
6.
Mol Psychiatry ; 26(11): 6411-6426, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34002021

RESUMO

Several psychiatric, neurologic and neurodegenerative disorders present increased brain ventricles volume, being hydrocephalus the disease with the major manifestation of ventriculomegaly caused by the accumulation of high amounts of cerebrospinal fluid (CSF). The molecules and pathomechanisms underlying cerebral ventricular enlargement are widely unknown. Kinase D interacting substrate of 220 kDa (KIDINS220) gene has been recently associated with schizophrenia and with a novel syndrome characterized by spastic paraplegia, intellectual disability, nystagmus and obesity (SINO syndrome), diseases frequently occurring with ventriculomegaly. Here we show that Kidins220, a transmembrane protein effector of various key neuronal signalling pathways, is a critical regulator of CSF homeostasis. We observe that both KIDINS220 and the water channel aquaporin-4 (AQP4) are markedly downregulated at the ventricular ependymal lining of idiopathic normal pressure hydrocephalus (iNPH) patients. We also find that Kidins220 deficient mice develop ventriculomegaly accompanied by water dyshomeostasis and loss of AQP4 in the brain ventricular ependymal layer and astrocytes. Kidins220 is a known cargo of the SNX27-retromer, a complex that redirects endocytosed plasma membrane proteins (cargos) back to the cell surface, thus avoiding their targeting to lysosomes for degradation. Mechanistically, we show that AQP4 is a novel cargo of the SNX27-retromer and that Kidins220 deficiency promotes a striking and unexpected downregulation of the SNX27-retromer that results in AQP4 lysosomal degradation. Accordingly, SNX27 silencing decreases AQP4 levels in wild-type astrocytes whereas SNX27 overexpression restores AQP4 content in Kidins220 deficient astrocytes. Together our data suggest that the KIDINS220-SNX27-retromer-AQP4 pathway is involved in human ventriculomegaly and open novel therapeutic perspectives.


Assuntos
Hidrocefalia , Animais , Aquaporina 4/genética , Aquaporina 4/metabolismo , Epêndima/metabolismo , Humanos , Hidrocefalia/genética , Hidrocefalia/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nexinas de Classificação/genética
7.
Cytotherapy ; 22(1): 1-5, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31866320

RESUMO

In the current article we summarize the 15-year experience of the Spanish Cell Therapy Network (TerCel), a successful collaborative public initiative funded by the Spanish government for the support of nationwide translational research in this important area. Thirty-two research groups organized in three programs devoted to cardiovascular, neurodegenerative and immune-inflammatory diseases, respectively, currently form the network. Each program has three working packages focused on basic science, pre-clinical studies and clinical application. TerCel has contributed during this period to boost the translational research in cell therapy in Spain, setting up a network of Good Manufacturing Practice-certified cell manufacturing facilities- and increasing the number of translational research projects, publications, patents and clinical trials of the participating groups, especially those in collaboration. TerCel pays particular attention to the public-private collaboration, which, for instance, has led to the development of the first allogeneic cell therapy product approved by the European Medicines Agency, Darvadstrocel. The current collaborative work is focused on the development of multicenter phase 2 and 3 trials that could translate these therapies to clinical practice for the benefit of patients.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Medicina Regenerativa/métodos , Pesquisa Translacional Biomédica/métodos , Pesquisa Biomédica , Doenças Cardiovasculares/terapia , Humanos , Doenças do Sistema Imunitário/terapia , Colaboração Intersetorial , Doenças Neurodegenerativas/terapia , Espanha
8.
J Neurosci ; 38(4): 814-825, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29217686

RESUMO

Synaptic protein α-synuclein (α-SYN) modulates neurotransmission in a complex and poorly understood manner and aggregates in the cytoplasm of degenerating neurons in Parkinson's disease. Here, we report that α-SYN present in dopaminergic nigral afferents is essential for the normal cycling and maintenance of neural stem cells (NSCs) in the brain subependymal zone of adult male and female mice. We also show that premature senescence of adult NSCs into non-neurogenic astrocytes in mice lacking α-SYN resembles the effects of dopaminergic fiber degeneration resulting from chronic exposure to 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine or intranigral inoculation of aggregated toxic α-SYN. Interestingly, NSC loss in α-SYN-deficient mice can be prevented by viral delivery of human α-SYN into their sustantia nigra or by treatment with l-DOPA, suggesting that α-SYN regulates dopamine availability to NSCs. Our data indicate that α-SYN, present in dopaminergic nerve terminals supplying the subependymal zone, acts as a niche component to sustain the neurogenic potential of adult NSCs and identify α-SYN and DA as potential targets to ameliorate neurogenic defects in the aging and diseased brain.SIGNIFICANCE STATEMENT We report an essential role for the protein α-synuclein present in dopaminergic nigral afferents in the regulation of adult neural stem cell maintenance, identifying the first synaptic regulator with an implication in stem cell niche biology. Although the exact role of α-synuclein in neural transmission is not completely clear, our results indicate that it is required for stemness and the preservation of neurogenic potential in concert with dopamine.


Assuntos
Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Neurais/metabolismo , Nicho de Células-Tronco/fisiologia , alfa-Sinucleína/metabolismo , Animais , Encéfalo/citologia , Senescência Celular/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Mutantes , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Neurônios Aferentes/citologia , Neurônios Aferentes/metabolismo
9.
Mol Ther ; 26(2): 550-567, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29273501

RESUMO

Progressive neuronal death in brainstem nuclei and widespread accumulation of α-synuclein are neuropathological hallmarks of Parkinson's disease (PD). Reduction of α-synuclein levels is therefore a potential therapy for PD. However, because α-synuclein is essential for neuronal development and function, α-synuclein elimination would dramatically impact brain function. We previously developed conjugated small interfering RNA (siRNA) sequences that selectively target serotonin (5-HT) or norepinephrine (NE) neurons after intranasal administration. Here, we used this strategy to conjugate inhibitory oligonucleotides, siRNA and antisense oligonucleotide (ASO), with the triple monoamine reuptake inhibitor indatraline (IND), to selectively reduce α-synuclein expression in the brainstem monoamine nuclei of mice after intranasal delivery. Following internalization of the conjugated oligonucleotides in monoamine neurons, reduced levels of endogenous α-synuclein mRNA and protein were found in substantia nigra pars compacta (SNc), ventral tegmental area (VTA), dorsal raphe nucleus (DR), and locus coeruleus (LC). α-Synuclein knockdown by ∼20%-40% did not cause monoaminergic neurodegeneration and enhanced forebrain dopamine (DA) and 5-HT release. Conversely, a modest human α-synuclein overexpression in DA neurons markedly reduced striatal DA release. These results indicate that α-synuclein negatively regulates monoamine neurotransmission and set the stage for the testing of non-viral inhibitory oligonucleotides as disease-modifying agents in α-synuclein models of PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Oligonucleotídeos/genética , alfa-Sinucleína/genética , Administração Intranasal , Animais , Células Cultivadas , Corpo Estriado/metabolismo , Dopamina/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Camundongos , Vias Neurais , Oligonucleotídeos/administração & dosagem , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Prosencéfalo/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Serotonina/metabolismo , Transdução de Sinais , Substância Negra/metabolismo , Substância Negra/fisiopatologia , Transmissão Sináptica/genética
10.
Stem Cells ; 35(12): 2403-2416, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28833887

RESUMO

Insulin is one of the standard components used to culture primary neurospheres. Although it stimulates growth of different types of cells, the effects of insulin on adult neural stem cells (NSCs) have not been well characterized. Here, we reveal that insulin stimulates proliferation, but not survival or self-renewal, of adult NSCs. This effect is mediated by insulin receptor substrate 2 (IRS2) and subsequent activation of the protein kinase B (or Akt), leading to increased activity of the G1-phase cyclin-dependent kinase 4 (Cdk4) and cell cycle progression. Neurospheres isolated from Irs2-deficient mice are reduced in size and fail to expand in culture and this impaired proliferation is rescued by introduction of a constitutively active Cdk4 (Cdk4R24C/R24C ). More interestingly, activation of the IRS2/Akt/Cdk4 signaling pathway by insulin is also necessary for the generation in vitro of neurons and oligodendrocytes from NSCs. Furthermore, the IRS2/Cdk4 pathway is also required for neuritogenesis, an aspect of neuronal maturation that has not been previously linked to regulation of the cell cycle. Differentiation of NSCs usually follows exit from the cell cycle due to increased levels of CDK-inhibitors which prevent activation of CDKs. In contrast, our data indicate that IRS2-mediated Cdk4 activity in response to a mitogen such as insulin promotes terminal differentiation of adult NSCs. Stem Cells 2017;35:2403-2416.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Insulina/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
12.
Nature ; 475(7356): 381-5, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21776083

RESUMO

The gene for the atypical NOTCH ligand delta-like homologue 1 (Dlk1) encodes membrane-bound and secreted isoforms that function in several developmental processes in vitro and in vivo. Dlk1, a member of a cluster of imprinted genes, is expressed from the paternally inherited chromosome. Here we show that mice that are deficient in Dlk1 have defects in postnatal neurogenesis in the subventricular zone: a developmental continuum that results in depletion of mature neurons in the olfactory bulb. We show that DLK1 is secreted by niche astrocytes, whereas its membrane-bound isoform is present in neural stem cells (NSCs) and is required for the inductive effect of secreted DLK1 on self-renewal. Notably, we find that there is a requirement for Dlk1 to be expressed from both maternally and paternally inherited chromosomes. Selective absence of Dlk1 imprinting in both NSCs and niche astrocytes is associated with postnatal acquisition of DNA methylation at the germ-line-derived imprinting control region. The results emphasize molecular relationships between NSCs and the niche astrocyte cells of the microenvironment, identifying a signalling system encoded by a single gene that functions coordinately in both cell types. The modulation of genomic imprinting in a stem-cell environment adds a new level of epigenetic regulation to the establishment and maintenance of the niche, raising wider questions about the adaptability, function and evolution of imprinting in specific developmental contexts.


Assuntos
Animais Recém-Nascidos/metabolismo , Astrócitos/metabolismo , Impressão Genômica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Nicho de Células-Tronco/citologia , Envelhecimento/genética , Animais , Sequência de Bases , Proteínas de Ligação ao Cálcio , Membrana Celular/metabolismo , Células Cultivadas , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Feminino , Genótipo , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bulbo Olfatório/citologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Nicho de Células-Tronco/metabolismo
13.
Differentiation ; 91(4-5): 28-41, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27016251

RESUMO

Individual cells dissected from the subependymal neurogenic niche of the adult mouse brain proliferate in medium containing basic fibroblast growth factor (bFGF) and/or epidermal growth factor (EGF) as mitogens, to produce multipotent clonal aggregates called neurospheres. These cultures constitute a powerful tool for the study of neural stem cells (NSCs) provided that they allow the analysis of their features and potential capacity in a controlled environment that can be modulated and monitored more accurately than in vivo. Clonogenic and population analyses under mitogen addition or withdrawal allow the quantification of the self-renewing and multilineage potency of these cells and the identification of the mechanisms involved in these properties. Here, we describe a set of procedures developed and/or modified by our group including several experimental options that can be used either independently or in combination for the ex vivo assessment of cell properties of NSCs obtained from the adult subependymal niche.


Assuntos
Técnicas de Cultura de Células , Epêndima/crescimento & desenvolvimento , Células-Tronco Neurais/citologia , Neurogênese/genética , Células-Tronco Adultas , Animais , Diferenciação Celular/genética , Epêndima/citologia , Humanos , Camundongos , Neurônios
14.
Stem Cells ; 33(1): 219-29, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25185890

RESUMO

Members of the cyclin-dependent kinase (CDK)-inhibitory protein (CIP)/kinase-inhibitory protein (KIP) family of cyclin-dependent kinase inhibitors regulate proliferation and cell cycle exit of mammalian cells. In the adult brain, the CIP/KIP protein p27(kip1) has been related to the regulation of intermediate progenitor cells located in neurogenic niches. Here, we uncover a novel function of p27(kip1) in the adult hippocampus as a dual regulator of stem cell quiescence and of cell-cycle exit of immature neurons. In vivo, p27(kip1) is detected in radial stem cells expressing SOX2 and in newborn neurons of the dentate gyrus. In vitro, the Cdkn1b gene encoding p27(kip1) is transcriptionally upregulated by quiescence signals such as BMP4. The nuclear accumulation of p27(kip1) protein in adult hippocampal stem cells encompasses the BMP4-induced quiescent state and its overexpression is able to block proliferation. p27(kip1) is also expressed in immature neurons upon differentiation of adult hippocampal stem cell cultures. Loss of p27(kip1) leads to an increase in proliferation and neurogenesis in the adult dentate gyrus, which results from both a decrease in the percentage of radial stem cells that are quiescent and a delay in cell cycle exit of immature neurons. Analysis of animals carrying a disruption in the cyclin-CDK interaction domain of p27(kip1) indicates that the CDK inhibitory function of the protein is necessary to control the activity of radial stem cells. Thus, we report that p27(kip1) acts as a central player of the molecular program that keeps adult hippocampal stem cells out of the cell cycle.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Hipocampo/citologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Animais , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Inibidor de Quinase Dependente de Ciclina p27/genética , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Knockout , Células-Tronco Neurais/metabolismo
16.
Ann Neurol ; 75(3): 351-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24243558

RESUMO

OBJECTIVE: Mounting evidence suggests that α-synuclein, a major protein component of Lewy bodies (LB), may be responsible for initiating and spreading the pathological process in Parkinson disease (PD). Supporting this concept, intracerebral inoculation of synthetic recombinant α-synuclein fibrils can trigger α-synuclein pathology in mice. However, it remains uncertain whether the pathogenic effects of recombinant synthetic α-synuclein may apply to PD-linked pathological α-synuclein and occur in species closer to humans. METHODS: Nigral LB-enriched fractions containing pathological α-synuclein were purified from postmortem PD brains by sucrose gradient fractionation and subsequently inoculated into the substantia nigra or striatum of wild-type mice and macaque monkeys. Control animals received non-LB fractions containing soluble α-synuclein derived from the same nigral PD tissue. RESULTS: In both mice and monkeys, intranigral or intrastriatal inoculations of PD-derived LB extracts resulted in progressive nigrostriatal neurodegeneration starting at striatal dopaminergic terminals. No neurodegeneration was observed in animals receiving non-LB fractions from the same patients. In LB-injected animals, exogenous human α-synuclein was quickly internalized within host neurons and triggered the pathological conversion of endogenous α-synuclein. At the onset of LB-induced degeneration, host pathological α-synuclein diffusely accumulated within nigral neurons and anatomically interconnected regions, both anterogradely and retrogradely. LB-induced pathogenic effects required both human α-synuclein present in LB extracts and host expression of α-synuclein. INTERPRETATION: α-Synuclein species contained in PD-derived LB are pathogenic and have the capacity to initiate a PD-like pathological process, including intracellular and presynaptic accumulations of pathological α-synuclein in different brain areas and slowly progressive axon-initiated dopaminergic nigrostriatal neurodegeneration.


Assuntos
Neurônios Dopaminérgicos/patologia , Corpos de Lewy/química , Degeneração Neural/patologia , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , Extratos de Tecidos/toxicidade , alfa-Sinucleína/toxicidade , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Feminino , Humanos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Macaca mulatta , Camundongos , Camundongos Knockout , Microinjeções , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Extratos de Tecidos/química , alfa-Sinucleína/administração & dosagem , alfa-Sinucleína/genética , alfa-Sinucleína/isolamento & purificação
17.
Ginecol Obstet Mex ; 83(4): 253-8, 2015 Apr.
Artigo em Espanhol | MEDLINE | ID: mdl-26727759

RESUMO

Exaggerated placental site, a trophoblastic benign lesion, is characterized by an extensive infiltration of the endometrium, myometrium and arterial walls by intermediate trophoblast cells. Trophoblastic benign lesions are often an incidental finding in the anatomopathological study, but may be associated with severe bleeding especially in relation to trauma. Case report: Multigravida 39 years old with excessive uterine bleeding after medical treatment of abortion. Once expelled gestational vesicle is seen sonographically a uterine cavity occupied by a heterogeneous endometrium with maximum anteroposterior diameter of 21 mm, plenty of color map, reaching myometrium. B-HCG serum is 164 mlU/ml. During hysteroscopy a massive bleeding happens and its necesary to use an intrauterine catheter to stop it. Computed tomography angiography shows suggestive findings of uterine vascular malformation. A hysterectomy as a diagnostic and definitive treatment is made and pathology reports an exaggerated placental site.


Assuntos
Aborto Induzido/efeitos adversos , Doenças Placentárias/etiologia , Trofoblastos , Hemorragia Uterina/etiologia , Adulto , Feminino , Humanos , Gravidez , Primeiro Trimestre da Gravidez
18.
Nat Commun ; 15(1): 2837, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565566

RESUMO

The adult mammalian brain retains some capacity to replenish neurons and glia, holding promise for brain regeneration. Thus, understanding the mechanisms controlling adult neural stem cell (NSC) differentiation is crucial. Paradoxically, adult NSCs in the subependymal zone transcribe genes associated with both multipotency maintenance and neural differentiation, but the mechanism that prevents conflicts in fate decisions due to these opposing transcriptional programmes is unknown. Here we describe intron detention as such control mechanism. In NSCs, while multiple mRNAs from stemness genes are spliced and exported to the cytoplasm, transcripts from differentiation genes remain unspliced and detained in the nucleus, and the opposite is true under neural differentiation conditions. We also show that m6A methylation is the mechanism that releases intron detention and triggers nuclear export, enabling rapid and synchronized responses. m6A RNA methylation operates as an on/off switch for transcripts with antagonistic functions, tightly controlling the timing of NSCs commitment to differentiation.


Assuntos
Células-Tronco Neurais , Animais , Íntrons/genética , Diferenciação Celular/genética , Neurônios , Neurogênese/genética , Mamíferos
19.
Sci Rep ; 14(1): 2490, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291230

RESUMO

Understanding the intricate pathogenic mechanisms behind Parkinson's disease (PD) and its multifactorial nature presents a significant challenge in disease modeling. To address this, we explore genetic models that better capture the disease's complexity. Given that aging is the primary risk factor for PD, this study investigates the impact of aging in conjunction with overexpression of wild-type human α-synuclein (α-Syn) in the dopaminergic system. This is achieved by introducing a novel transgenic mouse strain overexpressing α-Syn under the TH-promoter within the senescence-accelerated SAMP8 (P8) genetic background. Behavioral assessments, conducted at both 10 and 16 months of age, unveil motor impairments exclusive to P8 α-SynTg mice, a phenomenon conspicuously absent in α-SynTg mice. These findings suggest a synergistic interplay between heightened α-Syn levels and the aging process, resulting in motor deficits. These motor disturbances correlate with reduced dopamine (DA) levels, increased DA turnover, synaptic terminal loss, and notably, the depletion of dopaminergic neurons in the substantia nigra and noradrenergic neurons in the locus coeruleus. Furthermore, P8 α-SynTg mice exhibit alterations in gut transit time, mirroring early PD symptoms. In summary, P8 α-SynTg mice effectively replicate parkinsonian phenotypes by combining α-Syn transgene expression with accelerated aging. This model offers valuable insights into the understanding of PD and serves as a valuable platform for further research.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , Camundongos , Envelhecimento/genética , Envelhecimento/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Transgênicos , Degeneração Neural/patologia , Doença de Parkinson/metabolismo , Substância Negra/metabolismo
20.
Nat Commun ; 15(1): 775, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278798

RESUMO

Accumulation of senescent cells with age leads to tissue dysfunction and related diseases. Their detection in vivo still constitutes a challenge in aging research. We describe the generation of a fluorogenic probe (sulfonic-Cy7Gal) based on a galactose derivative, to serve as substrate for ß-galactosidase, conjugated to a Cy7 fluorophore modified with sulfonic groups to enhance its ability to diffuse. When administered to male or female mice, ß-galactosidase cleaves the O-glycosidic bond, releasing the fluorophore that is ultimately excreted by the kidneys and can be measured in urine. The intensity of the recovered fluorophore reliably reflects an experimentally controlled load of cellular senescence and correlates with age-associated anxiety during aging and senolytic treatment. Interestingly, our findings with the probe indicate that the effects of senolysis are temporary if the treatment is discontinued. Our strategy may serve as a basis for developing fluorogenic platforms designed for easy longitudinal monitoring of enzymatic activities in biofluids.


Assuntos
Envelhecimento , Senescência Celular , Masculino , Feminino , Camundongos , Animais , Envelhecimento/fisiologia , Senescência Celular/fisiologia , beta-Galactosidase , Rim , Corantes Fluorescentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA