Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Neuroradiology ; 64(3): 513-520, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34459946

RESUMO

PURPOSE: To determine the frequency of apparent posterior cerebral artery (PCA) territory asymmetry seen on arterial spin labeling (ASL) imaging in patients with a unilateral fetal PCA, but without underlying clinical or imaging pathology to suggest true hypoperfusion. METHODS: A search of radiology reports from 1/2017 through 6/2020 was performed with the inclusion term "fetal PCA." Eighty patients were included with unilateral fetal PCA confirmed on MRA or CTA, with brain MRI including ASL imaging, and without conventional imaging abnormality or clinical symptoms referable to the PCA territories. Cases were evaluated by two independent readers for visually apparent PCA perfusion asymmetries. ASL imaging consisted of pseudocontinuous ASL with 1.5 s labeling duration and 2 s post-labeling delay adapted from white paper recommendations. RESULTS: Thirteen of 80 cases (16.2%) had apparent hypoperfusion in the PCA territory contralateral to the side of the fetal PCA. Agreement between readers was near perfect (97.5%, κ = 0.91). This finding was more common in patients who were older, scanned on a 3.0 T magnet, and who had non-visualization of the posterior communicating artery contralateral to the fetal PCA. CONCLUSION: Apparent PCA hypoperfusion on ASL is not uncommon in patients with a contralateral fetal PCA who have no clinical or conventional imaging findings to suggest true hypoperfusion. This phenomenon is likely due to differential blood velocities between the carotid and vertebral arteries that result in differential arterial transit times and labeling efficiency. It is important for radiologists to know that apparent hypoperfusion may arise from variant circle of Willis anatomy.


Assuntos
Circulação Cerebrovascular , Artéria Cerebral Posterior , Humanos , Imageamento por Ressonância Magnética/métodos , Perfusão , Artéria Cerebral Posterior/diagnóstico por imagem , Marcadores de Spin , Artéria Vertebral
2.
J Magn Reson Imaging ; 53(6): 1841-1850, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33354852

RESUMO

Stereotactic radiosurgery (SRS) is used to treat cerebral arteriovenous malformations (AVMs). However, early evaluation of efficacy is difficult as structural magnetic resonance imaging (MRI)/magnetic resonance angiography (MRA) often does not demonstrate appreciable changes within the first 6 months. The aim of this study was to evaluate the use of four-dimensional (4D) flow MRI to quantify hemodynamic changes after SRS as early as 2 months. This was a retrospective observational study, which included 14 patients with both pre-SRS and post-SRS imaging obtained at multiple time points from 1 to 27 months after SRS. A 3T MRI Scanner was used to obtain T2 single-shot fast spin echo, time-of-flight MRA, and postcontrast 4D flow with three-dimensional velocity encoding between 150 and 200 cm/s. Post-hoc two-dimensional cross-sectional flow was measured for the dominant feeding artery, the draining vein, and the corresponding contralateral artery as a control. Measurements were performed by two independent observers, and reproducibility was assessed. Wilcoxon signed-rank tests were used to compare differences in flow, circumference, and pulsatility between the feeding artery and the contralateral artery both before and after SRS; and differences in nidus size and flow and circumference of the feeding artery and draining vein before and after SRS. Arterial flow (L/min) decreased in the primary feeding artery (mean: 0.1 ± 0.07 vs. 0.3 ± 0.2; p < 0.05) and normalized in comparison to the contralateral artery (mean: 0.1 ± 0.07 vs. 0.1 ± 0.07; p = 0.068). Flow decreased in the draining vein (mean: 0.1 ± 0.2 vs. 0.2 ± 0.2; p < 0.05), and the circumference of the draining vein also decreased (mean: 16.1 ± 8.3 vs. 15.7 ± 6.7; p < 0.05). AVM volume decreased after SRS (mean: 45.3 ± 84.8 vs. 38.1 ± 78.7; p < 0.05). However, circumference (mm) of the primary feeding artery remained similar after SRS (mean: 15.7 ± 2.7 vs. 16.1 ± 3.1; p = 0.600). 4D flow may be able to demonstrate early hemodynamic changes in AVMs treated with radiosurgery, and these changes appear to be more pronounced and occur earlier than the structural changes on standard MRI/MRA. Level of Evidence: 4 Technical Efficacy Stage: 1.


Assuntos
Malformações Arteriovenosas Intracranianas , Radiocirurgia , Estudos Transversais , Hemodinâmica , Humanos , Malformações Arteriovenosas Intracranianas/diagnóstico por imagem , Malformações Arteriovenosas Intracranianas/cirurgia , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Estudos Retrospectivos , Resultado do Tratamento
3.
J Neurooncol ; 147(3): 681-690, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32239431

RESUMO

PURPOSE: To use 3D pseudocontinuous arterial spin labeling (3D PCASL) and dynamic susceptibility contrast-enhanced (DSC) perfusion MRI to differentiate progressive disease from pseudoprogression in patients with glioblastoma (GBM). METHODS: Thirty-two patients with GBM who developed progressively enhancing lesions within the radiation field following resection and chemoradiation were included in this retrospective, single-institution study. The updated modified RANO criteria were used to establish progressive disease or pseudoprogression. Following 3D PCASL and DSC MR imaging, perfusion parameter estimates of cerebral blood flow (ASL-nCBF and DSC-nrCBF) and cerebral blood volume (DSC-nrCBV) were calculated. Additionally, contrast enhanced volumes were measured. Mann-Whitney U tests were used to compare groups. Linear discriminant analysis (LDA) and area under receiver operator characteristic curve (AUC) analyses were used to evaluate performance of each perfusion parameter and to determine optimal cut-off points. RESULTS: All perfusion parameter measurements were higher in patients with progressive disease (mean, 95% CI ASL-nCBF 2.48, [2.03, 2.93]; DSC-nrCBF = 2.27, [1.85, 2.69]; DSC-nrCBV = 3.51, [2.37, 4.66]) compared to pseudoprogression (mean, 95% CI ASL-nCBF 0.99, [0.47, 1.52]; DSC-nrCBF = 1.05, [0.36, 1.74]; DSC-nCBV = 1.19, [0.34, 2.05]), and findings were significant at the p < 0.0125 level (p = 0.001, 0.003, 0.002; effect size: Cohen's d = 1.48, 1.27, and 0.92). Contrast enhanced volumes were not significantly different between groups (p > 0.447). All perfusion parameters demonstrated high AUC (0.954 for ASL-nCBF, 0.867 for DSC-nrCBF, and 0.891 for DSC-nrCBV), however, ASL-nCBF demonstrated the highest AUC and misclassified the fewest cases (N = 6). Lesions correctly classified by ASL but misclassified by DSC were located along the skull base or adjacent to large resection cavities with residual blood products, at areas of increased susceptibility. CONCLUSION: Both 3D PCASL and DSC perfusion MRI techniques have nearly equivalent performance for the differentiation of progressive disease from pseudoprogression in patients with GBM. However, 3D PCASL is less sensitive to susceptibility artifact and may allow for improved classification in select cases.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Meios de Contraste , Feminino , Humanos , Imageamento Tridimensional/métodos , Angiografia por Ressonância Magnética/métodos , Masculino , Sensibilidade e Especificidade , Marcadores de Spin , Adulto Jovem
4.
J Ultrasound Med ; 39(8): 1601-1614, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32118312

RESUMO

OBJECTIVES: To investigate prenatal imaging findings supporting a diagnosis of suspected septo-optic dysplasia (SOD) by fetal ultrasound (US), magnetic resonance imaging (MRI), or both. METHODS: A retrospective review identified 11 patients with SOD: 9 had a clinical diagnosis of SOD postnatally, and 2 were terminated on the basis of suspicious prenatal imaging. Prenatal and neonatal imaging of the cavum septi pellucidi (CSP), frontal horns (FHs), and lateral ventricles was evaluated. RESULTS: The appearance of the CSP varied on US and MRI. Complete ("fused") FHs or partial absence of the CSP was reported in 6 of 11 patients by fetal US and 7 of 8 patients by fetal MRI. The diagnosis of SOD was prospectively suspected prenatally in 6 of 11 and in an additional 5 of 11 cases retrospectively. Fetal MRI incorrectly initially reported normal morphologic abnormalities for 2 cases with partial absence of the CSP, whereas US accurately identified the morphologic abnormalities in 1 of these cases before MRI. Imaging features were first suggested at anatomic US (4 patients) and follow-up prenatal US (2 patients). Neonatal imaging was concordant in all 9 live births: 5 completely absent CSP, 3 partially absent CSP, and 1 completely present CSP. Clinical manifestations included optic nerve hypoplasia (9 of 9), panhypopituitarism (5 of 9), and neurodevelopmental delays. CONCLUSIONS: Primary imaging features of SOD are "continuous" FHs with complete or partial absence of the CSP. Septo-optic dysplasia can be suspected in utero and can appear isolated but has substantial associated central nervous system anomalies identified on fetal MRI or after birth. Partial absence of the CSP can be a prenatal sign of suspected SOD, although fetal MRI lacked the spatial resolution to identify it accurately in all cases.


Assuntos
Displasia Septo-Óptica , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Gravidez , Estudos Retrospectivos , Displasia Septo-Óptica/diagnóstico por imagem , Septo Pelúcido/diagnóstico por imagem , Ultrassonografia Pré-Natal
5.
J Ultrasound Med ; 39(12): 2389-2403, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32597533

RESUMO

OBJECTIVES: We hypothesized that: (1) fetal frontal horn (FH) morphology and their proximity to the cavum septi pellucidi (CSP) can assist in suspecting complete agenesis of the corpus callosum (cACC) and partial agenesis of the corpus callosum (pACC) earlier than known indirect ultrasound (US) findings; (2) FHs assist in differentiating a true CSP from a pseudocavum; and (3) magnetic resonance imaging (MRI) is useful in learning FH morphology and pseudocavum etiology. METHODS: Thirty-two patients with cACC and 9 with pACC were identified on an Institutional Review Board-approved retrospective review. Of the 41 cases, 40 had prenatal US, and 21 had prenatal MRI; 17 had follow-up neonatal US, and 14 had follow-up neonatal MRI. Variables evaluated retrospectively were the presence of a CSP or a pseudocavum, ventricle size and shape, and FH shape (comma, trident, parallel, golf club, enlarged, or fused). Displacement between the inferior edge of the FH and the midline or cavum/pseudocavum was measured. RESULTS: Fetal FHs had an abnormal shape in 77% ≤20 weeks' gestation, 86% ≤24 weeks, and 90% >24 weeks. Frontal horns were laterally displaced greater than 2 mm in 85% ≤20 weeks, 91% ≤24 weeks, and 95% >24 weeks. The CSP was absent in 100% of cACC cases and 78% of pACC cases, and a pseudocavum was present in 88% of cACC cases and 78% of pACC cases across gestation. Magnetic resonance imaging confirmed US pseudocavums to be focal interhemispheric fluid or an elevated/dilated third ventricle. CONCLUSIONS: Frontal horns assist in assessing ACC ≤24 weeks and throughout gestation. Pseudocavums, often simulating CSPs, are common in ACC. Frontal horn lateral displacement and abnormal morphology, recognized by MRI correlations, are helpful in differentiating a pseudocavum from a true CSP. A normal CSP should not be cleared on screening US unless normally shaped FHs are seen directly adjacent to it.


Assuntos
Corpo Caloso , Ultrassonografia Pré-Natal , Agenesia do Corpo Caloso/diagnóstico por imagem , Feminino , Feto , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Gravidez , Estudos Retrospectivos , Septo Pelúcido/diagnóstico por imagem
6.
J Neurooncol ; 139(3): 633-642, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29860714

RESUMO

BACKGROUND: Molecular markers of WHO grade II/III glioma are known to have important prognostic and predictive implications and may be associated with unique imaging phenotypes. The purpose of this study is to determine whether three clinically relevant molecular markers identified in gliomas-IDH, 1p/19q, and MGMT status-show distinct quantitative MRI characteristics on FLAIR imaging. METHODS: Sixty-one patients with grade II/III gliomas who had molecular data and MRI available prior to radiation were included. Quantitative MRI features were extracted that measured tissue heterogeneity (homogeneity and pixel correlation) and FLAIR border distinctiveness (edge contrast; EC). T-tests were conducted to determine whether patients with different genotypes differ across the features. Logistic regression with LASSO regularization was used to determine the optimal combination of MRI and clinical features for predicting molecular subtypes. RESULTS: Patients with IDH wildtype tumors showed greater signal heterogeneity (p = 0.001) and lower EC (p = 0.008) within the FLAIR region compared to IDH mutant tumors. Among patients with IDH mutant tumors, 1p/19q co-deleted tumors had greater signal heterogeneity (p = 0.002) and lower EC (p = 0.005) compared to 1p/19q intact tumors. MGMT methylated tumors showed lower EC (p = 0.03) compared to the unmethylated group. The combination of FLAIR border distinctness, heterogeneity, and pixel correlation optimally classified tumors by IDH status. CONCLUSION: Quantitative imaging characteristics of FLAIR heterogeneity and border pattern in grade II/III gliomas may provide unique information for determining molecular status at time of initial diagnostic imaging, which may then guide subsequent surgical and medical management.


Assuntos
Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/classificação , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adulto , Idoso , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilação de DNA , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Feminino , Glioma/genética , Glioma/patologia , Humanos , Imageamento Tridimensional , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estudos Retrospectivos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Adulto Jovem
7.
J Magn Reson Imaging ; 45(2): 323-336, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27527500

RESUMO

Restriction spectrum imaging (RSI) is a novel diffusion-weighted MRI technique that uses the mathematically distinct behavior of water diffusion in separable microscopic tissue compartments to highlight key aspects of the tissue microarchitecture with high conspicuity. RSI can be acquired in less than 5 min on modern scanners using a surface coil. Multiple field gradients and high b-values in combination with postprocessing techniques allow the simultaneous resolution of length-scale and geometric information, as well as compartmental and nuclear volume fraction filtering. RSI also uses a distortion correction technique and can thus be fused to high resolution T2-weighted images for detailed localization, which improves delineation of disease extension into critical anatomic structures. In this review, we discuss the acquisition, postprocessing, and interpretation of RSI for prostate MRI. We also summarize existing data demonstrating the applicability of RSI for prostate cancer detection, in vivo characterization, localization, and targeting. LEVEL OF EVIDENCE: 5 J. Magn. Reson. Imaging 2017;45:323-336.


Assuntos
Água Corporal/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Medicina Baseada em Evidências , Humanos , Aumento da Imagem/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
8.
J Neurooncol ; 135(3): 601-609, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28871469

RESUMO

The 2016 World Health Organization Classification of Tumors of the Central Nervous System incorporates the use of molecular information into the classification of brain tumors, including grade II and III gliomas, providing new prognostic information that cannot be delineated based on histopathology alone. We hypothesized that these genomic subgroups may also have distinct imaging features. A retrospective single institution study was performed on 40 patients with pathologically proven infiltrating WHO grade II/III gliomas with a pre-treatment MRI and molecular data on IDH, chromosomes 1p/19q and ATRX status. Two blinded Neuroradiologists qualitatively assessed MR features. The relationship between each parameter and molecular subgroup (IDH-wildtype; IDH-mutant-1p/19q codeleted-ATRX intact; IDH-mutant-1p/19q intact-ATRX loss) was evaluated with Fisher's exact test. Progression free survival (PFS) was also analyzed. A border that could not be defined on FLAIR was most characteristic of IDH-wildtype tumors, whereas IDH-mutant tumors demonstrated either well-defined or slightly ill-defined borders (p = 0.019). Degree of contrast enhancement and presence of restricted diffusion did not distinguish molecular subgroups. Frontal lobe predominance was associated with IDH-mutant tumors (p = 0.006). The IDH-wildtype subgroup had significantly shorter PFS than the IDH-mutant groups (p < 0.001). No differences in PFS were present when separating by tumor grade. FLAIR border patterns and tumor location were associated with distinct molecular subgroups of grade II/III gliomas. These imaging features may provide fundamental prognostic and predictive information at time of initial diagnostic imaging.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/patologia , Imageamento por Ressonância Magnética , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Cromossomos Humanos Par 1 , Intervalo Livre de Doença , Feminino , Seguimentos , Glioma/genética , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Organização Mundial da Saúde , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo
10.
Acta Oncol ; 56(3): 427-430, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28156177

RESUMO

BACKGROUND: Radiation-induced cognitive impairment may be mediated by hippocampal damage, but the structural integrity of this region in tumor patients at baseline is unclear. Hippocampal volumes of 31 glioma patients prior to receiving radiotherapy were compared to a group of 34 healthy controls. MATERIALS AND METHODS: Left and right hippocampi on T1-weighted pre-contrast magnetic resonance images were automatically segmented using Freesurfer, and visually inspected for segmentation errors. Normalized hippocampal volume for each subject was calculated as the sum of left and right hippocampal volumes divided by the estimated total intracranial volume. The normalized amygdala volume was similarly analyzed as a reference structure. RESULTS: A Wilcoxon rank-sum test showed a significant difference in normalized hippocampal volumes between patients and controls (mean value 0.499 vs. 0.524, p = .01). No statistically significant difference was found for the amygdala. A post-hoc analysis revealed a significant difference in normalized hippocampal volumes between patients who had experienced seizures (mean value: 0.480, p < .05) and controls. No difference was noted between patients without seizures (mean value: 0.513) and controls. CONCLUSIONS: Hippocampi of glioma patients prior to radiotherapy were significantly smaller than those of age-matched controls. Group differences were larger in patients with tumor-associated seizures. This may be secondary to other processes such as tumor biology and inflammation.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Glioma/patologia , Glioma/radioterapia , Hipocampo/patologia , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico por imagem , Estudos de Casos e Controles , Feminino , Glioma/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão/efeitos da radiação , Adulto Jovem
11.
J Neurooncol ; 120(3): 539-46, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25135423

RESUMO

A subset of patients with high-grade glioma and brain metastases who are treated with bevacizumab develop regions of marked and persistent restricted diffusion that do not reflect recurrent tumor. Here, we quantify the degree of restricted diffusion and the relative cerebral blood volume (rCBV) within these regions of bevacizumab-related imaging abnormality (BRIA) in order to facilitate differentiation of these lesions from recurrent tumor. Six patients with high-grade glioma and two patients with brain metastases who developed regions of restricted diffusion after initiation of bevacizumab were included. Six pre-treatment GBM controls were also included. Restriction spectrum imaging (RSI) was used to create diffusion maps which were co-registered with rCBV maps. Within regions of restricted diffusion, mean RSI values and mean rCBV values were calculated for patients with BRIA and for the GBM controls. These values were also calculated for normal-appearing white matter (NAWM). RSI values in regions of restricted diffusion were higher for both BRIA and tumor when compared to NAWM; furthermore RSI values in BRIA were slightly higher than in tumor. Conversely, rCBV values were very low in BRIA-lower than both tumor and NAWM. However, there was only a trend for rCBV values to be higher in tumor than in NAWM. When evaluating areas of restricted diffusion in patients with high-grade glioma or brain metastases treated with bevacizumab, RSI is better able to detect the presence of pathology whereas rCBV is better able to differentiate BRIA from tumor. Thus, combining these tools may help to differentiate necrotic tissue related to bevacizumab treatment from recurrent tumor.


Assuntos
Inibidores da Angiogênese/efeitos adversos , Anticorpos Monoclonais Humanizados/efeitos adversos , Neoplasias Encefálicas/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Glioma/patologia , Imagem de Perfusão/métodos , Adulto , Idoso , Inibidores da Angiogênese/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Bevacizumab , Volume Sanguíneo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Encéfalo/efeitos da radiação , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/radioterapia , Circulação Cerebrovascular , Difusão , Feminino , Glioma/tratamento farmacológico , Glioma/fisiopatologia , Glioma/radioterapia , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Substância Branca/efeitos dos fármacos , Substância Branca/patologia , Substância Branca/fisiopatologia , Substância Branca/efeitos da radiação
12.
IDCases ; 35: e01928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38303732

RESUMO

Staphylococcus epidermidis is a typically indolent pathogen that is often considered a blood culture contaminant. It is a rare and unexpected cause of osteomyelitis, especially in the absence of recent surgical intervention or orthopedic implants. We highlight a case in which a 90-year-old Caucasian male with no recent spine surgery was found to have osteomyelitis of the lumbar spine and repeat positive blood cultures for methicillin resistant Staphylococcus epidermidis (MRSE). Further investigation revealed a history of mitral valve replacement and a new diagnosis of endocarditis leading to persistent bacteremia and seeding of his lumbar vertebrae. This case demonstrates that S. epidermidis can cause vertebral osteomyelitis resulting in severe complications that are more similar to highly pathogenic bacteria. We describe the steps to diagnosing this chronic undetected infection and related comorbidities.

13.
Front Radiol ; 4: 1345465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562528

RESUMO

Purpose: Conventional contrast-enhanced MRI is currently the primary imaging technique used to evaluate radiation treatment response in meningiomas. However, newer perfusion-weighted MRI techniques, such as 3D pseudocontinuous arterial spin labeling (3D pCASL) MRI, capture physiologic information beyond the structural information provided by conventional MRI and may provide additional complementary treatment response information. The purpose of this study is to assess 3D pCASL for the evaluation of radiation-treated meningiomas. Methods: Twenty patients with meningioma treated with surgical resection followed by radiation, or by radiation alone, were included in this retrospective single-institution study. Patients were evaluated with 3D pCASL and conventional contrast-enhanced MRI before and after radiation (median follow up 6.5 months). Maximum pre- and post-radiation ASL normalized cerebral blood flow (ASL-nCBF) was measured within each meningioma and radiation-treated meningioma (or residual resected and radiated meningioma), and the contrast-enhancing area was measured for each meningioma. Wilcoxon signed-rank tests were used to compare pre- and post-radiation ASL-nCBF and pre- and post-radiation area. Results: All treated meningiomas demonstrated decreased ASL-nCBF following radiation (p < 0.001). Meningioma contrast-enhancing area also decreased after radiation (p = 0.008) but only for approximately half of the meningiomas (9), while half (10) remained stable. A larger effect size (Wilcoxon signed-rank effect size) was seen for ASL-nCBF measurements (r = 0.877) compared to contrast-enhanced area measurements (r = 0.597). Conclusions: ASL perfusion may provide complementary treatment response information in radiation-treated meningiomas. This complementary information could aid clinical decision-making and provide an additional endpoint for clinical trials.

15.
Front Oncol ; 13: 1263556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829343

RESUMO

Background: Recently recognized as a distinct entity, a myxoid glioneuronal tumor (MGNT) is a rare, low-grade central nervous system tumor. MGNTs are commonly located at the septum pellucidum or in the third ventricle, increasing the likelihood of tumor or treatment-related damage to adjacent structures critical for memory, such as the fornix. Though there have been a handful of case reports of neurosurgical and oncological outcomes of MGNTs, memory outcomes following resection of MGNTs adjacent to the fornix have not been previously reported. Methods: We present a case of a high functioning female for whom an MRI revealed an incidental finding of an intraventricular tumor adjacent to the fornix bilaterally. The patient underwent resection of the tumor followed by MRI surveillance without additional oncologic intervention. Due to reported cognitive problems, the patient was referred for serial neuropsychological evaluations. Results: Post-operative MRI following resection revealed cytotoxic edema followed by selective, progressive atrophy of the bilateral anterior fornices. Post-surgically, the patient developed an isolated verbal memory impairment, which persisted one-year post resection with minimal improvement. The memory impairment impacted the patient's everyday functioning, including the ability to work in a cognitively demanding job. Conclusion: This unique case demonstrates the critical role of the bilateral fornix in verbal memory and underscores the importance of a careful risk/benefit analysis when considering neurosurgical intervention to MGNTs and other intracranial lesions adjacent to this structure during neurosurgical planning.

16.
PLoS One ; 18(2): e0279812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36800342

RESUMO

PURPOSE: Bevacizumab-related imaging abnormality (BRIA), appearing as areas of restricted diffusion on magnetic resonance imaging (MRI) and representing atypical coagulative necrosis pathologically, has been observed in patients with brain tumors receiving radiotherapy and bevacizumab. We investigated the role of cumulative radiation dose in BRIA development in a voxel-wise analysis. METHODS: Patients (n = 18) with BRIA were identified. All had high-grade gliomas or brain metastases treated with radiotherapy and bevacizumab. Areas of BRIA were segmented semi-automatically on diffusion-weighted MRI with apparent diffusion coefficient (ADC) images. To avoid confounding by possible tumor, hypoperfusion was confirmed with perfusion imaging. ADC images and radiation dose maps were co-registered to a high-resolution T1-weighted MRI and registration accuracy was verified. Voxel-wise normal tissue complication probability analyses were performed using a logistic model analyzing the relationship between cumulative voxel equivalent total dose in 2 Gy fractions (EQD2) and BRIA development at each voxel. Confidence intervals for regression model predictions were estimated with bootstrapping. RESULTS: Among 18 patients, 39 brain tumors were treated. Patients received a median of 4.5 cycles of bevacizumab and 1-4 radiation courses prior to BRIA appearance. Most (64%) treated tumors overlapped with areas of BRIA. The median proportion of each BRIA region of interest volume overlapping with tumor was 98%. We found a dose-dependent association between cumulative voxel EQD2 and the relative probability of BRIA (ß0 = -5.1, ß1 = 0.03 Gy-1, γ = 1.3). CONCLUSIONS: BRIA is likely a radiation dose-dependent phenomenon in patients with brain tumors receiving bevacizumab and radiotherapy. The combination of radiation effects and tumor microenvironmental factors in potentiating BRIA in this population should be further investigated.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Bevacizumab/efeitos adversos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Glioma/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Probabilidade , Doses de Radiação
17.
Front Neurol ; 14: 1184612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332983

RESUMO

Neuronal intranuclear inclusion disease (NIID), a neurodegenerative disease previously thought to be rare, is increasingly recognized despite heterogeneous clinical presentations. NIID is pathologically characterized by ubiquitin and p-62 positive intranuclear eosinophilic inclusions that affect multiple organ systems, including the brain, skin, and other tissues. Although the diagnosis of NIID is challenging due to phenotypic heterogeneity, a greater understanding of the clinical and imaging presentations can improve accurate and early diagnosis. Here, we present three cases of pathologically proven adult-onset NIID, all presenting with episodes of acute encephalopathy with protracted workups and lengthy time between symptom onset and diagnosis. Case 1 highlights challenges in the diagnosis of NIID when MRI does not reveal classic abnormalities and provides a striking example of hyperperfusion in the setting of acute encephalopathy, as well as unique pathology with neuronal central chromatolysis, which has not been previously described. Case 2 highlights the progression of MRI findings associated with multiple NIID-related encephalopathic episodes over an extended time period, as well as the utility of skin biopsy for antemortem diagnosis.

18.
Radiology ; 264(2): 542-50, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22723496

RESUMO

PURPOSE: To determine the ability of fully automated volumetric magnetic resonance (MR) imaging to depict hippocampal atrophy (HA) and to help correctly lateralize the seizure focus in patients with temporal lobe epilepsy (TLE). MATERIALS AND METHODS: This study was conducted with institutional review board approval and in compliance with HIPAA regulations. Volumetric MR imaging data were analyzed for 34 patients with TLE and 116 control subjects. Structural volumes were calculated by using U.S. Food and Drug Administration-cleared software for automated quantitative MR imaging analysis (NeuroQuant). Results of quantitative MR imaging were compared with visual detection of atrophy, and, when available, with histologic specimens. Receiver operating characteristic analyses were performed to determine the optimal sensitivity and specificity of quantitative MR imaging for detecting HA and asymmetry. A linear classifier with cross validation was used to estimate the ability of quantitative MR imaging to help lateralize the seizure focus. RESULTS: Quantitative MR imaging-derived hippocampal asymmetries discriminated patients with TLE from control subjects with high sensitivity (86.7%-89.5%) and specificity (92.2%-94.1%). When a linear classifier was used to discriminate left versus right TLE, hippocampal asymmetry achieved 94% classification accuracy. Volumetric asymmetries of other subcortical structures did not improve classification. Compared with invasive video electroencephalographic recordings, lateralization accuracy was 88% with quantitative MR imaging and 85% with visual inspection of volumetric MR imaging studies but only 76% with visual inspection of clinical MR imaging studies. CONCLUSION: Quantitative MR imaging can depict the presence and laterality of HA in TLE with accuracy rates that may exceed those achieved with visual inspection of clinical MR imaging studies. Thus, quantitative MR imaging may enhance standard visual analysis, providing a useful and viable means for translating volumetric analysis into clinical practice.


Assuntos
Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Análise de Variância , Atrofia/patologia , Estudos de Casos e Controles , Eletroencefalografia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Curva ROC , Sensibilidade e Especificidade
19.
Sci Rep ; 12(1): 786, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039538

RESUMO

Stereotactic radiosurgery planning for cerebral arteriovenous malformations (AVM) is complicated by the variability in appearance of an AVM nidus across different imaging modalities. We developed a deep learning approach to automatically segment cerebrovascular-anatomical maps from multiple high-resolution magnetic resonance imaging/angiography (MRI/MRA) sequences in AVM patients, with the goal of facilitating target delineation. Twenty-three AVM patients who were evaluated for radiosurgery and underwent multi-parametric MRI/MRA were included. A hybrid semi-automated and manual approach was used to label MRI/MRAs with arteries, veins, brain parenchyma, cerebral spinal fluid (CSF), and embolized vessels. Next, these labels were used to train a convolutional neural network to perform this task. Imaging from 17 patients (6362 image slices) was used for training, and 6 patients (1224 slices) for validation. Performance was evaluated by Dice Similarity Coefficient (DSC). Classification performance was good for arteries, veins, brain parenchyma, and CSF, with DSCs of 0.86, 0.91, 0.98, and 0.91, respectively in the validation image set. Performance was lower for embolized vessels, with a DSC of 0.75. This demonstrates the proof of principle that accurate, high-resolution cerebrovascular-anatomical maps can be generated from multiparametric MRI/MRA. Clinical validation of their utility in radiosurgery planning is warranted.


Assuntos
Angiografia Cerebral/métodos , Artérias Cerebrais/diagnóstico por imagem , Veias Cerebrais/diagnóstico por imagem , Aprendizado Profundo , Malformações Arteriovenosas Intracranianas/cirurgia , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Radiocirurgia/métodos , Artérias Cerebrais/anatomia & histologia , Veias Cerebrais/anatomia & histologia , Humanos
20.
Clin Imaging ; 68: 121-123, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32592972

RESUMO

Fat embolism in the subarachnoid space has a unique pathophysiology and clinical picture when compared to fat embolism syndrome. Lipid deposits in the subarachnoid space-most commonly the sequela of dermoid rupture in the neuraxis-can cause an inflammatory reaction leading to irritation of nearby neurovascular structures. Herein, we report the only case in the United States, to our knowledge, of a patient diagnosed with subarachnoid fat emboli secondary to sacral fracture who initially presented with a normal head CT and subsequently developed visual changes.


Assuntos
Embolia Gordurosa , Fraturas da Coluna Vertebral , Embolia Gordurosa/diagnóstico por imagem , Embolia Gordurosa/etiologia , Humanos , Imageamento por Ressonância Magnética , Espaço Subaracnóideo , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA