Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982708

RESUMO

Glaucoma is the leading cause of irreversible blindness, affecting 76 million globally. It is characterized by irreversible damage to the optic nerve. Pharmacotherapy manages intraocular pressure (IOP) and slows disease progression. However, non-adherence to glaucoma medications remains problematic, with 41-71% of patients being non-adherent to their prescribed medication. Despite substantial investment in research, clinical effort, and patient education protocols, non-adherence remains high. Therefore, we aimed to determine if there is a substantive genetic component behind patients' glaucoma medication non-adherence. We assessed glaucoma medication non-adherence with prescription refill data from the Marshfield Clinic Healthcare System's pharmacy dispensing database. Two standard measures were calculated: the medication possession ratio (MPR) and the proportion of days covered (PDC). Non-adherence on each metric was defined as less than 80% medication coverage over 12 months. Genotyping was done using the Illumina HumanCoreExome BeadChip in addition to exome sequencing on the 230 patients (1) to calculate the heritability of glaucoma medication non-adherence and (2) to identify SNPs and/or coding variants in genes associated with medication non-adherence. Ingenuity pathway analysis (IPA) was utilized to derive biological meaning from any significant genes in aggregate. Over 12 months, 59% of patients were found to be non-adherent as measured by the MPR80, and 67% were non-adherent as measured by the PDC80. Genome-wide complex trait analysis (GCTA) suggested that 57% (MPR80) and 48% (PDC80) of glaucoma medication non-adherence could be attributed to a genetic component. Missense mutations in TTC28, KIAA1731, ADAMTS5, OR2W3, OR10A6, SAXO2, KCTD18, CHCHD6, and UPK1A were all found to be significantly associated with glaucoma medication non-adherence by whole exome sequencing after Bonferroni correction (p < 10-3) (PDC80). While missense mutations in TINAG, CHCHD6, GSTZ1, and SEMA4G were found to be significantly associated with medication non-adherence by whole exome sequencing after Bonferroni correction (p < 10-3) (MPR80). The same coding SNP in CHCHD6 which functions in Alzheimer's disease pathophysiology was significant by both measures and increased risk for glaucoma medication non-adherence by three-fold (95% CI, 1.62-5.8). Although our study was underpowered for genome-wide significance, SNP rs6474264 within ZMAT4 (p = 5.54 × 10-6) was found to be nominally significant, with a decreased risk for glaucoma medication non-adherence (OR, 0.22; 95% CI, 0.11-0.42)). IPA demonstrated significant overlap, utilizing, both standard measures including opioid signaling, drug metabolism, and synaptogenesis signaling. CREB signaling in neurons (which is associated with enhancing the baseline firing rate for the formation of long-term potentiation in nerve fibers) was shown to have protective associations. Our results suggest a substantial heritable genetic component to glaucoma medication non-adherence (47-58%). This finding is in line with genetic studies of other conditions with a psychiatric component (e.g., post-traumatic stress disorder (PTSD) or alcohol dependence). Our findings suggest both risk and protective statistically significant genes/pathways underlying glaucoma medication non-adherence for the first time. Further studies investigating more diverse populations with larger sample sizes are needed to validate these findings.


Assuntos
Glaucoma , Adesão à Medicação , Humanos , Glaucoma/tratamento farmacológico , Glaucoma/genética , Pressão Intraocular/genética , Progressão da Doença , Tamanho da Amostra , Estudos Retrospectivos , Glutationa Transferase
2.
BMC Genomics ; 23(1): 539, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883037

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are emerging as a class of genes whose importance has yet to be fully realized. It is becoming clear that the primary function of lncRNAs is to regulate gene expression, and they do so through a variety of mechanisms that are critically tied to their subcellular localization. Although most lncRNAs are poorly understood, mapping lncRNA subcellular localization can provide a foundation for understanding these mechanisms. RESULTS: Here, we present an initial step toward uncovering the localization landscape of lncRNAs in the human retinal pigment epithelium (RPE) using high throughput RNA-Sequencing (RNA-Seq). To do this, we differentiated human induced pluripotent stem cells (iPSCs) into RPE, isolated RNA from nuclear and cytoplasmic fractions, and performed RNA-Seq on both. Furthermore, we investigated lncRNA localization changes that occur in response to oxidative stress. We discovered that, under normal conditions, most lncRNAs are seen in both the nucleus and the cytoplasm to a similar degree, but of the transcripts that are highly enriched in one compartment, far more are nuclear than cytoplasmic. Interestingly, under oxidative stress conditions, we observed an increase in lncRNA localization in both nuclear and cytoplasmic fractions. In addition, we found that nuclear localization was partially attributable to the presence of previously described nuclear retention motifs, while adenosine to inosine (A-to-I) RNA editing appeared to play a very minimal role. CONCLUSIONS: Our findings map lncRNA localization in the RPE and provide two avenues for future research: 1) how lncRNAs function in the RPE, and 2) how one environmental factor, in isolation, may potentially play a role in retinal disease pathogenesis through altered lncRNA localization.


Assuntos
Células-Tronco Pluripotentes Induzidas , RNA Longo não Codificante , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Análise de Sequência de RNA
3.
Mol Vis ; 28: 340-351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338668

RESUMO

Purpose: Nuclear retention is a mechanism whereby excess RNA transcripts are stored in the event that a cell needs to quickly respond to a stimulus; maintaining proper nuclear-to-cytoplasmic balance is important for cellular homeostasis and cell function. There are many mechanisms that are employed to determine whether to retain a transcript or export it to the cytoplasm, although the extent to which tissue or cell type, internal and external stressors, and disease pathogenesis affect this process is not yet clear. As the most biochemically active tissue in the body, the retina must mitigate endogenous and exogenous stressors to maintain cell health and tissue function. Oxidative stress, believed to contribute to the pathogenesis or progression of age-related macular degeneration (AMD) and inherited retinal dystrophies (IRDs), is produced both internally from biochemical processes as well as externally from environmental insult. Here, we evaluate the effect of oxidative stress on transcript localization in the retinal pigment epithelium (RPE), with specific focus on transcripts related to RPE function and disease. Methods: We performed poly(A) RNA sequencing on nuclear and cytoplasmic fractions from human induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) cells exposed to hydrogen peroxide (H2O2), as well as on untreated controls. Results: Under normal conditions, the number of mRNA transcripts retained in the nucleus exceeded that found in studies on other tissues. Further, the nuclear-to-cytoplasmic ratio of transcripts was altered following oxidative stress, as was the retention of genes associated with AMD and IRDs, as well as those that are important for RPE physiology. Conclusions: These results provide a localization catalog of all expressed mRNA in iPSC-RPE under normal conditions and after exposure to H2O2, shedding light on the extent to which H2O2 alters transcript localization and potentially offering insight into one mechanism through which oxidative stress may contribute to the progression of visual disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Macular , Humanos , Epitélio Pigmentado da Retina/metabolismo , Peróxido de Hidrogênio/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Estresse Oxidativo , Degeneração Macular/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Adv Exp Med Biol ; 1256: 221-235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33848004

RESUMO

Aberrant regulation of epigenetic mechanisms, including the two most common types; DNA methylation and histone modification have been implicated in common chronic progressive conditions, including Alzheimer disease, cardiovascular disease, and age-related macular degeneration (AMD). All these conditions are complex, meaning that environmental factors, genetic factors, and their interactions play a role in disease pathophysiology. Although genome wide association studies (GWAS), and studies on twins demonstrate the genetic/hereditary component to these complex diseases, including AMD, this contribution is much less than 100%. Moreover, the contribution of the hereditary component decreases in the advanced, later onset forms of these chronic diseases including AMD. This underscores the need to elucidate how the genetic and environmental factors function to exert their influence on disease pathophysiology. By teasing out epigenetic mechanisms and how they exert their influence on AMD, therapeutic targets can be tailored to prevent and/or slow down disease progression. Epigenetic studies that incorporate well-characterized patient tissue samples (including affected tissues and peripheral blood), similar to those relevant to gene expression studies, along with genetic and epidemiological information, can be the first step in developing appropriate functional assays to validate findings and identify potential therapies.


Assuntos
Estudo de Associação Genômica Ampla , Degeneração Macular , Metilação de DNA , Epigênese Genética , Epigenômica , Predisposição Genética para Doença , Humanos , Degeneração Macular/genética , Degeneração Macular/terapia
6.
Mol Vis ; 22: 636-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27307695

RESUMO

PURPOSE: The risk of vision loss from proliferative diabetic retinopathy (PDR) can be reduced with timely detection and treatment. We aimed to identify serum molecular signatures that might help in the early detection of PDR in patients with diabetes. METHODS: A total of 40 patients with diabetes were recruited at King Khaled Eye Specialist Hospital in Riyadh, Saudi Arabia, 20 with extensive PDR and 20 with mild non-proliferative diabetic retinopathy (NPDR). The two groups were matched in age, gender, and known duration of diabetes. We examined the whole genome transcriptome of blood samples from the patients using RNA sequencing. We built a model using a support vector machine (SVM) approach to identify gene combinations that can classify the two groups. RESULTS: Differentially expressed genes were calculated from a total of 25,500 genes. Six genes (CCDC144NL, DYX1C1, KCNH3, LOC100506476, LOC285847, and ZNF80) were selected from the top 26 differentially expressed genes, and a combinatorial molecular signature was built based on the expression of the six genes. The mean area under receiver operating characteristic (ROC) curve was 0.978 in the cross validation. The corresponding sensitivity and specificity were 91.7% and 91.5%, respectively. CONCLUSIONS: Our preliminary study defined a combinatorial molecular signature that may be useful as a potential biomarker for early detection of proliferative diabetic retinopathy in patients with diabetes. A larger-scale study with an independent cohort of samples is necessary to validate and expand these findings.


Assuntos
Biomarcadores/sangue , Diabetes Mellitus Tipo 2/sangue , Retinopatia Diabética/sangue , Idoso , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , RNA/sangue , Curva ROC , Fatores de Risco , Arábia Saudita , Sensibilidade e Especificidade
8.
Am J Pathol ; 184(10): 2641-52, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25111227

RESUMO

Mutations in the ubiquitously expressed pre-mRNA processing factors 3, 8, and 31 (PRPF3, PRPF8, and PRPF31) cause nonsyndromic dominant retinitis pigmentosa in humans, an inherited retinal degeneration. It is unclear what mechanisms, or which cell types of the retina, are affected. Transgenic mice with the human mutations in these genes display late-onset morphological changes in the retinal pigment epithelium (RPE). To determine whether the observed morphological changes are preceded by abnormal RPE function, we investigated its phagocytic function in Prpf3(T494M/T494M), Prpf8(H2309P/H2309P), and Prpf31(+/-) mice. We observe decreased phagocytosis in primary RPE cultures from mutant mice, and this is replicated by shRNA-mediated knockdown of PRPF31 in human ARPE-19 cells. The diurnal rhythmicity of phagocytosis is almost lost, indicated by the marked attenuation of the phagocytic burst 2 hours after light onset. The strength of adhesion between RPE apical microvilli and photoreceptor outer segments also declined during peak adhesion in all mutants. In all models, at least one of the receptors involved in binding and internalization of shed photoreceptor outer segments was subjected to changes in localization. Although the mechanism underlying these changes in RPE function is yet to be elucidated, these data are consistent with the mouse RPE being the primary cell affected by mutations in the RNA splicing factors, and these changes occur at an early age.


Assuntos
Proteínas do Olho/genética , Proteínas de Ligação a RNA/genética , Epitélio Pigmentado da Retina/patologia , Retinose Pigmentar/genética , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Animais , Ritmo Circadiano , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Fagocitose , Precursores de RNA/genética , Splicing de RNA , Fatores de Processamento de RNA , Retina/metabolismo , Degeneração Retiniana/genética , Epitélio Pigmentado da Retina/fisiopatologia , Retinose Pigmentar/patologia
9.
BMC Genomics ; 14: 486, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23865674

RESUMO

BACKGROUND: The retina is a complex tissue comprised of multiple cell types that is affected by a diverse set of diseases that are important causes of vision loss. Characterizing the transcripts, both annotated and novel, that are expressed in a given tissue has become vital for understanding the mechanisms underlying the pathology of disease. RESULTS: We sequenced RNA prepared from three normal human retinas and characterized the retinal transcriptome at an unprecedented level due to the increased depth of sampling provided by the RNA-seq approach. We used a non-redundant reference transcriptome from all of the empirically-determined human reference tracks to identify annotated and novel sequences expressed in the retina. We detected 79,915 novel alternative splicing events, including 29,887 novel exons, 21,757 3' and 5' alternate splice sites, and 28,271 exon skipping events. We also identified 116 potential novel genes. These data represent a significant addition to the annotated human transcriptome. For example, the novel exons detected increase the number of identified exons by 3%. Using a high-throughput RNA capture approach to validate 14,696 of these novel transcriptome features we found that 99% of the putative novel events can be reproducibly detected. Further, 15-36% of the novel splicing events maintain an open reading frame, suggesting they produce novel protein products. CONCLUSIONS: To our knowledge, this is the first application of RNA capture to perform large-scale validation of novel transcriptome features. In total, these analyses provide extensive detail about a previously uncharacterized level of transcript diversity in the human retina.


Assuntos
Processamento Alternativo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Retina/metabolismo , Transcriptoma , Adulto , Biologia Computacional/métodos , Proteínas de Ligação a DNA/genética , Feminino , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Proteínas de Neoplasias/genética , Especificidade de Órgãos/genética , Isoformas de RNA , Reprodutibilidade dos Testes
10.
Cell Death Discov ; 9(1): 242, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443108

RESUMO

TNFRSF10A (tumor necrosis factor receptor superfamily member 10A) encodes a cell surface receptor protein involved in apoptotic, necroptotic, and inflammatory pathways. Dysregulation of TNFRSF10A has been implicated in sensitization to apoptosis and to the development of multiple diseases, yet little is known of the AC100861.1 long noncoding RNA (lncRNA) that lies head-to-head with TNFRSF10A. Given its genomic positioning, we sought to investigate the function of AC100861.1, focusing on its potential relationship with TNFRSF10A and the role it may play in death receptor signaling. Using knockdown and overexpression strategies, we probed cell viability and examined transcript and protein-level changes in key genes involved in apoptosis, necroptosis, and inflammation. Decreased cell viability was observed upon TNFRSF10A overexpression, regardless of whether the cells were subjected to the chemical stressor tunicamycin. Similarly, overexpression of AC100861.1 led to increased cell death, with a further increase observed under conditions of cellular stress. Knockdown of TNFRSF10A increased cell death only when the cells were stressed, and AC100861.1 knockdown exhibited no effect on cell death. Neither knockdown nor overexpression of either of these genes greatly affected the expression of the other. Manipulating AC100861.1, however, led to marked changes in the expression of genes involved in necroptosis and inflammatory cell-signaling pathways. Additionally, RNA fluorescence in situ hybridization (RNA-FISH) revealed that the AC100861.1 transcript is localized primarily to the cytoplasm. Together, these data suggest that AC100861.1 may have a role in regulating necroptotic and inflammatory signaling pathways and that this function is separate from changes in TNFRSF10A expression. Given the importance of this genomic locus for cell survival, these data provide insight into the function of a poorly understood lncRNA with potential implications regarding disease pathology and treatment.

11.
Cell Genom ; 3(6): 100298, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37388908

RESUMO

Cell classes in the human retina are highly heterogeneous with their abundance varying by several orders of magnitude. Here, we generated and integrated a multi-omics single-cell atlas of the adult human retina, including more than 250,000 nuclei for single-nuclei RNA-seq and 137,000 nuclei for single-nuclei ATAC-seq. Cross-species comparison of the retina atlas among human, monkey, mice, and chicken revealed relatively conserved and non-conserved types. Interestingly, the overall cell heterogeneity in primate retina decreases compared with that of rodent and chicken retina. Through integrative analysis, we identified 35,000 distal cis-element-gene pairs, constructed transcription factor (TF)-target regulons for more than 200 TFs, and partitioned the TFs into distinct co-active modules. We also revealed the heterogeneity of the cis-element-gene relationships in different cell types, even from the same class. Taken together, we present a comprehensive single-cell multi-omics atlas of the human retina as a resource that enables systematic molecular characterization at individual cell-type resolution.

12.
Cells ; 12(23)2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067097

RESUMO

Age-related macular degeneration (AMD) is a leading cause of blindness, and elucidating its underlying disease mechanisms is vital to the development of appropriate therapeutics. We identified differentially expressed genes (DEGs) and differentially spliced genes (DSGs) across the clinical stages of AMD in disease-affected tissue, the macular retina pigment epithelium (RPE)/choroid and the macular neural retina within the same eye. We utilized 27 deeply phenotyped donor eyes (recovered within a 6 h postmortem interval time) from Caucasian donors (60-94 years) using a standardized published protocol. Significant findings were then validated in an independent set of well-characterized donor eyes (n = 85). There was limited overlap between DEGs and DSGs, suggesting distinct mechanisms at play in AMD pathophysiology. A greater number of previously reported AMD loci overlapped with DSGs compared to DEGs between disease states, and no DEG overlap with previously reported loci was found in the macular retina between disease states. Additionally, we explored allele-specific expression (ASE) in coding regions of previously reported AMD risk loci, uncovering a significant imbalance in C3 rs2230199 and CFH rs1061170 in the macular RPE/choroid for normal eyes and intermediate AMD (iAMD), and for CFH rs1061147 in the macular RPE/choroid for normal eyes and iAMD, and separately neovascular AMD (NEO). Only significant DEGs/DSGs from the macular RPE/choroid were found to overlap between disease states. STAT1, validated between the iAMD vs. normal comparison, and AGTPBP1, BBS5, CERKL, FGFBP2, KIFC3, RORα, and ZNF292, validated between the NEO vs. normal comparison, revealed an intricate regulatory network with transcription factors and miRNAs identifying potential upstream and downstream regulators. Findings regarding the complement genes C3 and CFH suggest that coding variants at these loci may influence AMD development via an imbalance of gene expression in a tissue-specific manner. Our study provides crucial insights into the multifaceted genomic underpinnings of AMD (i.e., tissue-specific gene expression changes, potential splice variation, and allelic imbalance), which may open new avenues for AMD diagnostics and therapies specific to iAMD and NEO.


Assuntos
D-Ala-D-Ala Carboxipeptidase Tipo Serina , Degeneração Macular Exsudativa , Humanos , Alelos , Inibidores da Angiogênese , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Expressão Gênica , Proteínas do Citoesqueleto , Proteínas de Ligação a Fosfato , Proteínas de Transporte , Proteínas do Tecido Nervoso , Proteínas de Ligação ao GTP
13.
Cell Genom ; 3(6): 100302, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37388919

RESUMO

Age-related macular degeneration (AMD) is a leading cause of blindness, affecting 200 million people worldwide. To identify genes that could be targeted for treatment, we created a molecular atlas at different stages of AMD. Our resource is comprised of RNA sequencing (RNA-seq) and DNA methylation microarrays from bulk macular retinal pigment epithelium (RPE)/choroid of clinically phenotyped normal and AMD donor eyes (n = 85), single-nucleus RNA-seq (164,399 cells), and single-nucleus assay for transposase-accessible chromatin (ATAC)-seq (125,822 cells) from the retina, RPE, and choroid of 6 AMD and 7 control donors. We identified 23 genome-wide significant loci differentially methylated in AMD, over 1,000 differentially expressed genes across different disease stages, and an AMD Müller state distinct from normal or gliosis. Chromatin accessibility peaks in genome-wide association study (GWAS) loci revealed putative causal genes for AMD, including HTRA1 and C6orf223. Our systems biology approach uncovered molecular mechanisms underlying AMD, including regulators of WNT signaling, FRZB and TLE2, as mechanistic players in disease.

14.
Bioinformatics ; 27(18): 2518-28, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21775302

RESUMO

MOTIVATION: A critical task in high-throughput sequencing is aligning millions of short reads to a reference genome. Alignment is especially complicated for RNA sequencing (RNA-Seq) because of RNA splicing. A number of RNA-Seq algorithms are available, and claim to align reads with high accuracy and efficiency while detecting splice junctions. RNA-Seq data are discrete in nature; therefore, with reasonable gene models and comparative metrics RNA-Seq data can be simulated to sufficient accuracy to enable meaningful benchmarking of alignment algorithms. The exercise to rigorously compare all viable published RNA-Seq algorithms has not been performed previously. RESULTS: We developed an RNA-Seq simulator that models the main impediments to RNA alignment, including alternative splicing, insertions, deletions, substitutions, sequencing errors and intron signal. We used this simulator to measure the accuracy and robustness of available algorithms at the base and junction levels. Additionally, we used reverse transcription-polymerase chain reaction (RT-PCR) and Sanger sequencing to validate the ability of the algorithms to detect novel transcript features such as novel exons and alternative splicing in RNA-Seq data from mouse retina. A pipeline based on BLAT was developed to explore the performance of established tools for this problem, and to compare it to the recently developed methods. This pipeline, the RNA-Seq Unified Mapper (RUM), performs comparably to the best current aligners and provides an advantageous combination of accuracy, speed and usability. AVAILABILITY: The RUM pipeline is distributed via the Amazon Cloud and for computing clusters using the Sun Grid Engine (http://cbil.upenn.edu/RUM). CONTACT: ggrant@pcbi.upenn.edu; epierce@mail.med.upenn.edu SUPPLEMENTARY INFORMATION: The RNA-Seq sequence reads described in the article are deposited at GEO, accession GSE26248.


Assuntos
Análise de Sequência de RNA/métodos , Algoritmos , Animais , Sequência de Bases , Benchmarking , Análise por Conglomerados , Éxons , Biblioteca Gênica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , RNA/genética , Splicing de RNA , Alinhamento de Sequência , Software
15.
Neural Regen Res ; 17(9): 1875-1880, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35142661

RESUMO

Retinal disorders are a group of ocular diseases whose onset is associated with a number of aberrant molecular and cellular processes or physical damages that affect retinal structure and function resulting in neural and vascular degeneration in the retina. Current research has primarily focused on delaying retinal disease with minimal success in preventing or reversing neuronal degeneration. In this review, we explore a relatively new field of research involving circular RNAs, whose potential roles as biomarkers and mediators of retinal disease pathogenesis have only just emerged. While knowledge of circular RNAs function is limited given its novelty, current evidence has highlighted their roles as modulators of microRNAs, regulators of gene transcription, and biomarkers of disease development and progression. Here, we summarize how circular RNAs may be implicated in the pathogenesis of common retinal diseases including diabetic retinopathy, glaucoma, proliferative vitreoretinopathy, and age-related macular degeneration. Further, we explore the potential of circular RNAs as novel biomarkers and therapeutic targets for the diagnosis and treatment of retinal diseases.

16.
Artigo em Inglês | MEDLINE | ID: mdl-34299682

RESUMO

The Mayan population of Guatemala is understudied within eye and vision research. Studying an observational homogenous, geographically isolated population of individuals seeking eye care may identify unique clinical, demographic, environmental and genetic risk factors for blinding eye disease that can inform targeted and effective screening strategies to achieve better and improved health care distribution. This study served to: (a) identify the ocular health needs within this population; and (b) identify any possible modifiable risk factors contributing to disease pathophysiology within this population. We conducted a cross-sectional study with 126 participants. Each participant completed a comprehensive eye examination, provided a blood sample for genetic analysis, and received a structured core baseline interview for a standardized epidemiological questionnaire at the Salama Lions Club Eye Hospital in Salama, Guatemala. Interpreters were available for translation to the patients' native dialect, to assist participants during their visit. We performed a genome-wide association study for ocular disease association on the blood samples using Illumina's HumanOmni2.5-8 chip to examine single nucleotide polymorphism SNPs in this population. After implementing quality control measures, we performed adjusted logistic regression analysis to determine which genetic and epidemiological factors were associated with eye disease. We found that the most prevalent eye conditions were cataracts (54.8%) followed by pseudoexfoliation syndrome (PXF) (24.6%). The population with both conditions was 22.2%. In our epidemiological analysis, we found that eye disease was significantly associated with advanced age. Cataracts were significantly more common among those living in the 10 districts with the least resources. Furthermore, having cataracts was associated with a greater likelihood of PXF after adjusting for both age and sex. In our genetic analysis, the SNP most nominally significantly associated with PXF lay within the gene KSR2 (p < 1 × 10-5). Several SNPs were associated with cataracts at genome-wide significance after adjusting for covariates (p < 5 × 10-8). About seventy five percent of the 33 cataract-associated SNPs lie within 13 genes, with the majority of genes having only one significant SNP (5 × 10-8). Using bioinformatic tools including PhenGenI, the Ensembl genome browser and literature review, these SNPs and genes have not previously been associated with PXF or cataracts, separately or in combination. This study can aid in understanding the prevalence of eye conditions in this population to better help inform public health planning and the delivery of quality, accessible, and relevant health and preventative care within Salama, Guatemala.


Assuntos
Catarata , Síndrome de Exfoliação , Catarata/etnologia , Catarata/genética , Estudos Transversais , Síndrome de Exfoliação/etnologia , Síndrome de Exfoliação/genética , Estudo de Associação Genômica Ampla , Guatemala/epidemiologia , Humanos , Indígenas Centro-Americanos
17.
Analyst ; 134(8): 1594-600, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20448925

RESUMO

Tetracycline antibiotics, such as chlortetracycline (CTC) and tetracycline (TC), are introduced into agricultural lands through the application of manure as fertilizer. These compounds are phytotoxic to certain crop plants, including pinto beans (Phaseolus vulgaris), the species used for this investigation. While the mechanism of this toxicity is not yet understood, CTC is known to be a calcium chelator. We describe here a novel method to show that CTC is taken up by pinto bean plants and chelates calcium in leaves. Cameleon fusion proteins can provide qualitative and quantitative imaging of intracellular calcium levels, but current methodology requires stable transformation. Many plant species, including pinto beans, are not yet transformable using standard Agrobacterium-based protocols. To determine the role of calcium chelation in this plant, a rapid, biolistic method was developed to transiently express the cameleon protein. This method can easily be adapted to other plant systems. Our findings provide evidence that chelation of intracellular calcium by CTC is related to phytotoxic effects caused by this antibiotic in pinto beans. Root uptake of CTC and TC by pinto beans and their translocation to leaves were further verified by fluorescence spectroscopy and liquid chromatography/mass spectrometry, confirming results of the biolistic method that showed calcium chelation by tetracyclines in leaves.


Assuntos
Antibacterianos/farmacologia , Cálcio/metabolismo , Folhas de Planta/efeitos dos fármacos , Plantas/efeitos dos fármacos , Tetraciclina/farmacologia , Biolística , Bioensaio , Clortetraciclina/farmacologia , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Fabaceae/efeitos dos fármacos , Folhas de Planta/metabolismo , Plantas/metabolismo
18.
MethodsX ; 6: 1292-1304, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31205862

RESUMO

RNA-binding proteins (RBPs) are instrumental in the biochemical processing and physiological functioning of non-coding RNAs. Therefore, as interest in non-coding RNAs continues to expand, refining the techniques capable of probing protein-RNA interactions will prove ever more valuable in the characterization of these molecules. To identify the RNAs bound by a given RBP, cross-linking and immunoprecipitation (CLIP) and its iterations have been widely utilized, but these approaches can be complex, labor-intensive, and time consuming. Here, we describe a rapid and technically simple method based upon individual nucleotide resolution CLIP (iCLIP) and infrared CLIP (irCLIP). Termed quick-irCLIP, our protocol circumvents confounding steps, can be completed in less than three days, and is capable of interrogating protein-RNA interactions at single nucleotide resolution.

19.
Nat Commun ; 9(1): 4234, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315276

RESUMO

Mutations in pre-mRNA processing factors (PRPFs) cause autosomal-dominant retinitis pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed genes cause non-syndromic retinal disease. Here, we generate transcriptome profiles from RP11 (PRPF31-mutated) patient-derived retinal organoids and retinal pigment epithelium (RPE), as well as Prpf31+/- mouse tissues, which revealed that disrupted alternative splicing occurred for specific splicing programmes. Mis-splicing of genes encoding pre-mRNA splicing proteins was limited to patient-specific retinal cells and Prpf31+/- mouse retinae and RPE. Mis-splicing of genes implicated in ciliogenesis and cellular adhesion was associated with severe RPE defects that include disrupted apical - basal polarity, reduced trans-epithelial resistance and phagocytic capacity, and decreased cilia length and incidence. Disrupted cilia morphology also occurred in patient-derived photoreceptors, associated with progressive degeneration and cellular stress. In situ gene editing of a pathogenic mutation rescued protein expression and key cellular phenotypes in RPE and photoreceptors, providing proof of concept for future therapeutic strategies.


Assuntos
Proteínas do Olho/metabolismo , Retinose Pigmentar/etiologia , Retinose Pigmentar/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Cílios/genética , Cílios/metabolismo , Cílios/fisiologia , Proteínas do Olho/genética , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mutação/genética , Organoides/citologia , Organoides/metabolismo , Splicing de RNA/genética , Splicing de RNA/fisiologia , Retina/citologia , Retina/metabolismo , Retinose Pigmentar/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA