Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 237: 123937, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36882143

RESUMO

Constructing a system to carry medicine for more effective remedy of cancer has been a leading challenge, as the number of cancer cases continues to increase. In this present research, a curcumin-loaded chitosan/halloysite/carbon nanotube nanomixture was fabricated by means of water/oil/water emulsification method. The drug loading efficiency (DL) and entrapment efficiency (EE), as a result, reached 42 % and 88 %, respectively and FTIR and XRD analysis confirmed the bonding between the drug and nanocarrier. Morphological observation through FE-SEM and characterization through DLS analysis demonstrated that the average size of nanoparticles is 267.37 nm. Assessment of release within 96 h in pH 7.4 and 5.4 showed sustained release. For more investigation, release data was analyzed by diverse kinetic models to understand the mechanism in the release procedure. An MTT assay was also carried out, and the results illustrated apoptosis induction on MCF-7 cells and exhibited ameliorated cytotoxicity of the drug-loaded nanocomposite compared to the free curcumin. These findings suggest that the unique pH-responsive chitosan/halloysite/carbon nanotube nanocomposite might make a good option for drug delivery systems, particularly for the cancer treatment.


Assuntos
Quitosana , Curcumina , Nanopartículas , Nanotubos de Carbono , Humanos , Curcumina/química , Quitosana/química , Argila , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos
2.
ACS Biomater Sci Eng ; 9(4): 1862-1890, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36877212

RESUMO

The promise of cell therapy has been augmented by introducing biomaterials, where intricate scaffold shapes are fabricated to accommodate the cells within. In this review, we first discuss cell encapsulation and the promising potential of biomaterials to overcome challenges associated with cell therapy, particularly cellular function and longevity. More specifically, cell therapies in the context of autoimmune disorders, neurodegenerative diseases, and cancer are reviewed from the perspectives of preclinical findings as well as available clinical data. Next, techniques to fabricate cell-biomaterials constructs, focusing on emerging 3D bioprinting technologies, will be reviewed. 3D bioprinting is an advancing field that enables fabricating complex, interconnected, and consistent cell-based constructs capable of scaling up highly reproducible cell-biomaterials platforms with high precision. It is expected that 3D bioprinting devices will expand and become more precise, scalable, and appropriate for clinical manufacturing. Rather than one printer fits all, seeing more application-specific printer types, such as a bioprinter for bone tissue fabrication, which would be different from a bioprinter for skin tissue fabrication, is anticipated in the future.


Assuntos
Bioimpressão , Engenharia Tecidual , Engenharia Tecidual/métodos , Encapsulamento de Células , Bioimpressão/métodos , Materiais Biocompatíveis/uso terapêutico , Transplante de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA