Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Comput Biol ; 14(2): e1005956, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29401453

RESUMO

The packaging of DNA inside a nucleus shows complex structure stabilized by a host of DNA-bound factors. Both the distribution of these factors and the contacts between different genomic locations of the DNA can now be measured on a genome-wide scale. This has advanced the development of models aimed at predicting the conformation of DNA given only the locations of bound factors-the chromatin folding problem. Here we present a maximum-entropy model that is able to predict a contact map representation of structure given a sequence of bound factors. Non-local effects due to the sequence neighborhood around contacting sites are found to be important for making accurate predictions. Lastly, we show that the model can be used to infer a sequence of bound factors given only a measurement of structure. This opens up the possibility for efficiently predicting sequence regions that may play a role in generating cell-type specific structural differences.


Assuntos
Cromatina/química , DNA/química , Drosophila melanogaster/fisiologia , Algoritmos , Animais , Teorema de Bayes , Análise por Conglomerados , Perfilação da Expressão Gênica , Genoma , Modelos Estatísticos , Mutação , Conformação de Ácido Nucleico , Polímeros/química , Probabilidade , Ligação Proteica , Dobramento de Proteína , Proteínas/química
2.
Dev Sci ; 22(2): e12739, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30176105

RESUMO

A growing body of research has documented associations between adverse childhood environments and DNA methylation, highlighting epigenetic processes as potential mechanisms through which early external contexts influence health across the life course. The present study tested a complementary hypothesis: indicators of children's early internal, biological, and behavioral responses to stressful challenges may also be linked to stable patterns of DNA methylation later in life. Children's autonomic nervous system reactivity, temperament, and mental health symptoms were prospectively assessed from infancy through early childhood, and principal components analysis (PCA) was applied to derive composites of biological and behavioral reactivity. Buccal epithelial cells were collected from participants at 15 and 18 years of age. Findings revealed an association between early life biobehavioral inhibition/disinhibition and DNA methylation across many genes. Notably, reactive, inhibited children were found to have decreased DNA methylation of the DLX5 and IGF2 genes at both time points, as compared to non-reactive, disinhibited children. Results of the present study are provisional but suggest that the gene's profile of DNA methylation may constitute a biomarker of normative or potentially pathological differences in reactivity. Overall, findings provide a foundation for future research to explore relations among epigenetic processes and differences in both individual-level biobehavioral risk and qualities of the early, external childhood environment.


Assuntos
Comportamento Infantil , Metilação de DNA , Adolescente , Adulto , Criança , Pré-Escolar , Epigênese Genética , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Humanos , Inibição Psicológica , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/fisiologia , Masculino , Transtornos Mentais/genética , Análise de Componente Principal , Temperamento , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
3.
BMC Bioinformatics ; 19(1): 372, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314429

RESUMO

BACKGROUND: DNA inside eukaryotic cells wraps around histones to form the 11nm chromatin fiber that can further fold into higher-order DNA loops, which may depend on the binding of architectural factors. Predicting how the DNA will fold given a distribution of bound factors, here viewed as a type of sequence, is currently an unsolved problem and several heterogeneous polymer models have shown that many features of the measured structure can be reproduced from simulations. However a model that determines the optimal connection between sequence and structure and that can rapidly assess the effects of varying either one is still lacking. RESULTS: Here we train a dense neural network to solve for the local folding of chromatin, connecting structure, represented as a contact map, to a sequence of bound chromatin factors. The network includes a convolutional filter that compresses the large number of bound chromatin factors into a single 1D sequence representation that is optimized for predicting structure. We also train a network to solve the inverse problem, namely given only structural information in the form of a contact map, predict the likely sequence of chromatin states that generated it. CONCLUSIONS: By carrying out sensitivity analysis on both networks, we are able to highlight the importance of chromatin contexts and neighborhoods for regulating long-range contacts, along with critical alterations that affect contact formation. Our analysis shows that the networks have learned physical insights that are informative and intuitive about this complex polymer problem.


Assuntos
Cromatina/química , Redes Neurais de Computação , Conformação Molecular
4.
BMC Bioinformatics ; 16: 171, 2015 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-26001583

RESUMO

BACKGROUND: A variety of DNA binding proteins are involved in regulating and shaping the packing of chromatin. They aid the formation of loops in the DNA that function to isolate different structural domains. A recent experimental technique, Hi-C, provides a method for determining the frequency of such looping between all distant parts of the genome. Given that the binding locations of many chromatin associated proteins have also been measured, it has been possible to make estimates for their influence on the long-range interactions as measured by Hi-C. However, a challenge in this analysis is the predominance of non-specific contacts that mask out the specific interactions of interest. RESULTS: We show that transforming the Hi-C contact frequencies into free energies gives a natural method for separating out the distance dependent non-specific interactions. In particular we apply Principal Component Analysis (PCA) to the transformed free energy matrix to identify the dominant modes of interaction. PCA identifies systematic effects as well as high frequency spatial noise in the Hi-C data which can be filtered out. Thus it can be used as a data driven approach for normalizing Hi-C data. We assess this PCA based normalization approach, along with several other normalization schemes, by fitting the transformed Hi-C data using a pairwise interaction model that takes as input the known locations of bound chromatin factors. The result of fitting is a set of predictions for the coupling energies between the various chromatin factors and their effect on the energetics of looping. We show that the quality of the fit can be used as a means to determine how much PCA filtering should be applied to the Hi-C data. CONCLUSIONS: We find that the different normalizations of the Hi-C data vary in the quality of fit to the pairwise interaction model. PCA filtering can improve the fit, and the predicted coupling energies lead to biologically meaningful insights for how various chromatin bound factors influence the stability of DNA loops in chromatin.


Assuntos
Cromatina/química , Cromatina/genética , Mapeamento Cromossômico/métodos , Cromossomos/química , DNA/química , Drosophila melanogaster/genética , Genoma , Conformação de Ácido Nucleico , Animais , DNA/análise , DNA/genética , Conformação Molecular , Análise de Componente Principal
5.
Artigo em Inglês | MEDLINE | ID: mdl-25977707

RESUMO

BACKGROUND: DNA methylation is an epigenetic mark that balances plasticity with stability. While DNA methylation exhibits tissue specificity, it can also vary with age and potentially environmental exposures. In studies of DNA methylation, samples from specific tissues, especially brain, are frequently limited and so surrogate tissues are often used. As yet, we do not fully understand how DNA methylation profiles of these surrogate tissues relate to the profiles of the central tissue of interest. RESULTS: We have adapted principal component analysis to analyze data from the Illumina 450K Human Methylation array using a set of 17 individuals with 3 brain regions and whole blood. All of the top five principal components in our analysis were associated with a variable of interest: principal component 1 (PC1) differentiated brain from blood, PCs 2 and 3 were representative of tissue composition within brain and blood, respectively, and PCs 4 and 5 were associated with age of the individual (PC4 in brain and PC5 in both brain and blood). We validated our age-related PCs in four independent sample sets, including additional brain and blood samples and liver and buccal cells. Gene ontology analysis of all five PCs showed enrichment for processes that inform on the functions of each PC. CONCLUSIONS: Principal component analysis (PCA) allows simultaneous and independent analysis of tissue composition and other phenotypes of interest. We discovered an epigenetic signature of age that is not associated with cell type composition and required no correction for cellular heterogeneity.

6.
Epigenetics Chromatin ; 6(1): 4, 2013 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-23452981

RESUMO

BACKGROUND: Measurement of genome-wide DNA methylation (DNAm) has become an important avenue for investigating potential physiologically-relevant epigenetic changes. Illumina Infinium (Illumina, San Diego, CA, USA) is a commercially available microarray suite used to measure DNAm at many sites throughout the genome. However, it has been suggested that a subset of array probes may give misleading results due to issues related to probe design. To facilitate biologically significant data interpretation, we set out to enhance probe annotation of the newest Infinium array, the HumanMethylation450 BeadChip (450 k), with >485,000 probes covering 99% of Reference Sequence (RefSeq) genes (National Center for Biotechnology Information (NCBI), Bethesda, MD, USA). Annotation that was added or expanded on includes: 1) documented SNPs in the probe target, 2) probe binding specificity, 3) CpG classification of target sites and 4) gene feature classification of target sites. RESULTS: Probes with documented SNPs at the target CpG (4.3% of probes) were associated with increased within-tissue variation in DNAm. An example of a probe with a SNP at the target CpG demonstrated how sample genotype can confound the measurement of DNAm. Additionally, 8.6% of probes mapped to multiple locations in silico. Measurements from these non-specific probes likely represent a combination of DNAm from multiple genomic sites. The expanded biological annotation demonstrated that based on DNAm, grouping probes by an alternative high-density and intermediate-density CpG island classification provided a distinctive pattern of DNAm. Finally, variable enrichment for differentially methylated probes was noted across CpG classes and gene feature groups, dependant on the tissues that were compared. CONCLUSION: DNAm arrays offer a high-throughput approach for which careful consideration of probe content should be utilized to better understand the biological processes affected. Probes containing SNPs and non-specific probes may affect the assessment of DNAm using the 450 k array. Additionally, probe classification by CpG enrichment classes and to a lesser extent gene feature groups resulted in distinct patterns of DNAm. Thus, we recommend that compromised probes be removed from analyses and that the genomic context of DNAm is considered in studies deciphering the biological meaning of Illumina 450 k array data.

7.
BMC Med Genomics ; 6: 58, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24373378

RESUMO

BACKGROUND: The presence of an extra whole or part of chromosome 21 in people with Down syndrome (DS) is associated with multiple neurological changes, including pathological aging that often meets the criteria for Alzheimer's Disease (AD). In addition, trisomies have been shown to disrupt normal epigenetic marks across the genome, perhaps in response to changes in gene dosage. We hypothesized that trisomy 21 would result in global epigenetic changes across all participants, and that DS patients with cognitive impairment would show an additional epigenetic signature. METHODS: We therefore examined whole-genome DNA methylation in buccal epithelial cells of 10 adults with DS and 10 controls to determine whether patterns of DNA methylation were correlated with DS and/or cognitive impairment. In addition we examined DNA methylation at the APP gene itself, to see whether there were changes in DNA methylation in this population. Using the Illumina Infinium 450 K Human Methylation Array, we examined more than 485,000 CpG sites distributed across the genome in buccal epithelial cells. RESULTS: We found 3300 CpGs to be differentially methylated between the groups, including 495 CpGs that overlap with clusters of differentially methylated probes. In addition, we found 5 probes that were correlated with cognitive function including two probes in the TSC2 gene that has previously been associated with Alzheimer's disease pathology. We found no enrichment on chromosome 21 in either case, and targeted analysis of the APP gene revealed weak evidence for epigenetic impacts related to the AD phenotype. CONCLUSIONS: Overall, our results indicated that both Trisomy 21 and cognitive impairment were associated with distinct patterns of DNA methylation.


Assuntos
Cognição , Metilação de DNA , Síndrome de Down/genética , Síndrome de Down/fisiopatologia , Adulto , Precursor de Proteína beta-Amiloide/genética , Estudos de Casos e Controles , Cromossomos Humanos Par 21/genética , Ilhas de CpG/genética , Feminino , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA