Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(15): 6055-6064, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38569051

RESUMO

While ion current rectification (ICR) in aprotic solvent has been fundamentally studied, its application in sensing devices lacks exploration. The development of sensors operable in these solvents is highly beneficial to the chemical industry, where polar aprotic solvents, such as acetonitrile, are widely used. Currently, this industry relies on the use of inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectroscopy (OES) for the detection of metal contamination in organic products. Herein, we present the detection of trace amounts of Pd2+ and Co2+ using ion current rectification, in cyclam-functionalized quartz nanopipettes, with tetraethylammonium tetrafluoroborate (TEATFB) in MeCN as supporting electrolyte. This methodology is employed to determine the concentration of Pd in organic products, before and after purification by Celite filtration and column chromatography, obtaining comparable results to ICP-MS within minutes and without complex sample preparation. Finite element simulations are used to support our experimental findings, which reveal that the formation of double-junction diodes in the nanopore enables trace detection of these metals, with a significant response from baseline even at picomolar concentrations.

3.
J Phys Chem B ; 126(30): 5689-5694, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35867912

RESUMO

Ion current rectification is highly reported in aqueous electrochemical systems and sensors but lacks exploration in organic systems due to the additional complexity introduced by non-aqueous solvents. Herein, a detailed study on ion current rectification with highly polar and mildly polar aprotic organic solvents as a function of tetraethylammonium tetrafluoroborate supporting electrolyte concentration is presented. To explain our experimental results, we introduce a previously unreported phenomenon: the formation of a double-junction diode within the nanopore that arises due to a complex interplay between ion and solvent enrichment effects. Finite element simulations are used to explore this phenomenon and the subsequent effect on the rectifying behavior of conical quartz nanopores.


Assuntos
Nanoporos , Eletrólitos , Transporte de Íons , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA