Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677758

RESUMO

The quality standards for the export of chestnuts generate large quantities of rejected fruits, which require novel processing technologies for their safe industrial utilization. This study aimed to investigate the impact of high-pressure processing (HPP) and hydrothermal treatments (HT) on the physicochemical properties of rejected chestnut starch. Chestnuts were treated by HPP at 400, 500, and 600 MPa for 5 min and HT at 50 °C for 45 min. In general, all HPP treatments did not induce starch gelatinization, and their granules preserved the integrity and Maltese-cross. Moreover, starch granules' size and resistant starch content increased with the intensity of pressure. Native and HT chestnut starches were the most susceptible to digestion. HPP treatments did not affect the C-type crystalline pattern of native starch, but the crystalline region was gradually modified to become amorphous. HPP-600 MPa treated starch showed modified pasting properties and exhibited the highest values of peak viscosity. This study demonstrates for the first time that after HPP-600 MPa treatment, a novel chestnut starch gel structure is obtained. Moreover, HPP treatments could increase the slow-digesting starch, which benefits the development of healthier products. HPP can be considered an interesting technology to obtain added-value starch from rejected chestnut fruits.


Assuntos
Amilose , Amido , Amido/química , Amilose/química , Viscosidade , Nozes/química , Amido Resistente/análise
2.
Langmuir ; 34(43): 12957-12967, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30272986

RESUMO

Mixing supramolecular gels based on enantiomers leads to re-arrangement of gel fibers at the molecular level, which results in more favorable packing and tunable properties. Bis(urea) compounds tagged with a phenylalanine methyl ester in racemic and enantiopure forms were synthesized. Both enantiopure and racemate compounds formed gels in a wide range of solvents and the racemate (1-rac) formed a stronger gel network compared with the enantiomers. The gel (1R+1S) obtained by mixing equimolar amount of enantiomers (1R and 1S) showed enhanced mechanical and thermal stability compared to enantiomers and racemate gels. The preservation of chirality in these compounds was analyzed by circular dichroism and optical rotation measurements. Analysis of the scanning electron microscopy (SEM) and atomic force microscopy (AFM) images revealed that the network in the mixed gel is a combination of enantiomers and racemate fibers, which was further supported by solid-state NMR. The analysis of the packing in xerogels by solid-state NMR spectra and the existence of twisted-tape morphology in SEM and AFM images confirmed the presence of both self-sorted and co-assembled fibers in mixed gel. The enhanced thermal and mechanical strength may be attributed to the enhanced intermolecular forces between the racemate and the enantiomer and the combination of both self-sorted and co-assembled enantiomers in the mixed gel.

3.
Food Res Int ; 176: 113784, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163701

RESUMO

The effect of the cold-set and heat-set gelling mechanism of whey protein isolate on bigel production was assessed. For this purpose, hydrogel phase was produced with whey protein isolated (10 % w/v) and for oleogel sunflower oil and glycerol monostearate (7.5 % w/v) were used. Bigels were produced by hot emulsification of different hydrogel:oleogel ratios (from 90:10 up to 10:90). For cold-set bigels (CSB) NaCl (200 mM) was added to the aqueous phase prior to the emulsification and the emulsion was cooled to promote the 3D network formation. On the other hand, heat-set bigels (HSB) were produced by heating the emulsion (80 °C, 60 min). Bigels were evaluated through microscopy, FTIR, thermal and texture analyzes. Results showed that depending on the hydrogel:oleogel ratio and gelling mechanism different structures organization were obtained. CSB were more organized, showing that the rate of gelation was the mechanism responsible for the structure. However, for HSB the heat treatment destabilized the emulsion and disorganized structures were observed for high oleogel content. FTIR corroborates the visual observation and showed that the arrangement was purely physical. In addition, the structural arrangement led to different mechanical properties. In general, HSB produced gels with rubber-like behavior, higher elasticity modulus and the presence of a breaking point. In contrast, CSB behaves as squeezing gel, with no breaking point and lower values of elasticity modulus. Moreover, for O/W bigels the dispersed oleogel particles disrupted the WPI network decreasing the gel strength in comparison to pure hydrogels. However, for systems where oleogel was the continuous phase, the gel strength was recovered due to the metastable and dynamic character of these systems. Thus, results showed that the gelling mechanism of the protein exerted an effect on the physical properties of bigels. In addition, the mechanical properties also can be modulated according to the bigel composition, allowing its application in products with different sensorial characteristics.


Assuntos
Hidrogéis , Compostos Orgânicos , Proteínas do Soro do Leite , Emulsões , Hidrogéis/química , Compostos Orgânicos/química
4.
Carbohydr Polym ; 347: 122742, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39486971

RESUMO

Gelled emulsion systems offer promising matrices for encapsulating bioactive compounds, enhancing stability, bioavailability, and controlled release. Incorporating inulin-type dietary fibers into emulsion-filled gels can innovate food products. This study explored the impact of inulin concentration (0-15 % w/w) on visual aspect, microstructure, particle size distribution, creaming stability, rheological behavior, and encapsulation efficiency of emulsions and gelled emulsions with clove bud oil rich in eugenol. Regardless of inulin concentration, systems exhibited evenly distributed small oil droplets, ensuring good creaming stability. Emulsions with 10-15 % inulin formed gels upon natural cooling to approximately 30 °C. Viscoelastic properties varied with inulin concentration, attributed to increased polymer chain approximation and mobility. Higher inulin content decreased the transition temperature (66 °C, 56 °C, and 54 °C for 10 %, 12.5 %, and 15 % inulin, respectively). While inulin did not enhance creaming stability, it acted as a physical barrier, improving encapsulation efficiency of eugenol to nearly 100 %. Inulin-based emulsion-filled gels offer potential for functional food development, enriching nutritional value and health benefits.


Assuntos
Fibras na Dieta , Emulsões , Géis , Inulina , Tamanho da Partícula , Reologia , Inulina/química , Emulsões/química , Géis/química , Viscosidade , Óleo de Cravo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA