Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Appl Environ Microbiol ; 89(9): e0066623, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37668382

RESUMO

Because it can grow in buildings with complex hot water distribution systems (HWDS), healthcare facilities recognize the waterborne bacterium Legionella pneumophila as a major nosocomial infection threat and often try to clear the systems with a pasteurization process known as superheat-and-flush. After this treatment, many facilities find that the contaminating populations slowly recover, suggesting the possibility of in situ evolution favoring increased survival in high-temperature conditions. To mimic this process in a controlled environment, an adaptive laboratory evolution model was used to select a wild-type strain of L. pneumophila for survival to transient exposures to temperatures characteristic of routine hot water use or failed pasteurization processes in HWDS. Over their evolution, these populations became insensitive to exposure to 55°C and developed the ability to survive short exposures to 59°C heat shock. Heat-adapted lineages maintained a higher expression of heat-shock genes during low-temperature incubation in freshwater, suggesting a pre-adaptation to heat stress. Although there were distinct mutation profiles in each of the heat-adapted lineages, each acquired multiple mutations in the DnaJ/DnaK/ClpB disaggregase complex, as well as mutations in chaperone htpG and protease clpX. These mutations were specific to heat-shock survival and were not seen in control lineages included in the experimental model without exposure to heat shock. This study supports in situ observations of adaptation to heat stress and demonstrates the potential of L. pneumophila to develop resistance to control measures. IMPORTANCE As a bacterium that thrives in warm water ecosystems, Legionella pneumophila is a key factor motivating regulations on hot water systems. Two major measures to control Legionella are high circulating temperatures intended to curtail growth and the use of superheat-and-flush pasteurization processes to eliminate established populations. Facilities often suffer recolonization of their hot water systems; hospitals are particularly at risk due to the severe nosocomial pneumoniae caused by Legionella. To understand these long-term survivors, we have used an adaptive laboratory evolution model to replicate this process. We find major differences between the mutational profiles of heat-adapted and heat-naïve L. pneumophila populations including mutations in major heat-shock genes like chaperones and proteases. This model demonstrates that well-validated treatment protocols are needed to clear contaminated systems and-in an analog to antibiotic resistance-the importance of complete eradication of the resident population to prevent selection for more persistent bacteria.

2.
Mol Microbiol ; 115(4): 789-806, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33191583

RESUMO

Legionella pneumophila (Lp) is a waterborne bacterium able to infect human alveolar macrophages, causing Legionnaires' disease. Lp can survive for several months in water, while searching for host cells to grow in, such as ciliates and amoeba. In Lp, the sigma factor RpoS is essential for survival in water. A previous transcriptomic study showed that RpoS positively regulates the small regulatory RNA Lpr10. In the present study, deletion of lpr10 results in an increased survival of Lp in water. Microarray analysis and RT-qPCR revealed that Lpr10 negatively regulates the expression of RpoS in the postexponential phase. Electrophoretic mobility shift assay and in-line probing showed that Lpr10 binds to a region upstream of the previously identified transcription start sites (TSS) of rpoS. A third putative transcription start site was identified by primer extension analysis, upstream of the Lpr10 binding site. In addition, nlpD TSS produces a polycistronic mRNA including the downstream gene rpoS, indicating a fourth TSS for rpoS. Our results suggest that the transcripts from the third and fourth TSS are negatively regulated by the Lpr10 sRNA. Therefore, we propose that Lpr10 is involved in a negative regulatory feedback loop to maintain expression of RpoS to an optimal level.


Assuntos
Proteínas de Bactérias/metabolismo , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Doença dos Legionários/microbiologia , Mutação , Sítio de Iniciação de Transcrição
3.
Can J Microbiol ; 68(12): 747-757, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36194898

RESUMO

Legionella pneumophila is a Gram-negative bacterium found in natural and man-made water systems where it replicates within amoebas and ciliates. In humans, once inside the lungs, L. pneumophila replicates in alveolar macrophages and causes Legionnaires' disease, a severe pneumonia. The Icm/Dot type IVb secretion system is a major virulence factor required for intracellular multiplication. The Icm/Dot system allows the secretion of effectors into the cytoplasm of the host cell. These effectors modify host cell vesicular trafficking and prevent maturation of the phagosome. The innate immune response is crucial in restricting L. pneumophila proliferation. TNF-α is one of the major cytokines involved in this process as it renders macrophages more resistant to L. pneumophila infection and induces apoptosis of L. pneumophila-infected macrophages. Tail-specific proteases (Tsp) are involved in tolerating thermal stress and in virulence. We have previously characterized the Tsp encoded by L. pneumophila, showing that it is important for surviving thermal stress and for infection of amoeba when a temperature change occurs during infection. Here, we demonstrated that Tsp is required for intracellular multiplication in macrophages. Absence of tsp is associated with higher production of TNF-α by macrophages in response to L. pneumophila infection. This effect is independent of the Icm/Dot secretion system.


Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , Fator de Necrose Tumoral alfa , Doença dos Legionários/microbiologia , Endopeptidases , Proteínas de Bactérias/fisiologia
4.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33608288

RESUMO

Legionella pneumophila (Lp) is an inhabitant of natural and human-made water systems, where it replicates within amoebae and ciliates and survives within biofilms. When Lp-contaminated aerosols are breathed in, Lp can enter the lungs and may infect human alveolar macrophages, causing severe pneumonia known as Legionnaires' disease. Lp is often found in hot water distribution systems (HWDS), which are linked to nosocomial outbreaks. Heat treatment is used to disinfect HWDS and reduce the concentration of Lp However, Lp is often able to recolonize these water systems, indicating an efficient heat shock response. Tail-specific proteases (Tsp) are typically periplasmic proteases implicated in degrading aberrant proteins in the periplasm and important for surviving thermal stress. In Lp Philadelphia-1, Tsp is encoded by the lpg0499 gene. In this paper, we show that Tsp is important for surviving thermal stress in water and for optimal infection of amoeba when a shift in temperature occurs during intracellular growth. We also demonstrate that Tsp is expressed in the postexponential phase but repressed in the exponential phase and that the cis-encoded small regulatory RNA Lpr17 shows the opposite expression, suggesting that it represses translation of tsp In addition, our results show that tsp is regulated by CpxR, a major regulator in Lp, in an Lpr17-independent manner. Deletion of CpxR also reduced the ability of Lp to survive heat shock. In conclusion, our study shows that Tsp is likely an important factor for the survival and growth of Lp in water systems.IMPORTANCELp is a major cause of nosocomial and community-acquired pneumonia. Lp is found in water systems, including hot water distribution systems. Heat treatment is a method of disinfection often used to limit the presence of Lp in such systems; however, the benefit is usually short term, as Lp is able to quickly recolonize these systems. Presumably, Lp responds efficiently to thermal stress, but so far, not much is known about the genes involved. In this paper, we show that the Tsp and the two-component system CpxRA are required for resistance to thermal stress when Lp is free in water and when it is inside host cells. Our study identifies critical systems for the survival of Lp in its natural environment under thermal stress.


Assuntos
Amoeba/microbiologia , Proteínas de Bactérias/genética , Endopeptidases/genética , Legionella pneumophila/genética , Termotolerância/genética , Temperatura Alta , Água
5.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33674435

RESUMO

In large-building water systems, Legionella pneumophila is exposed to common environmental stressors such as copper. The aim of this study was to evaluate the susceptibility to copper of L. pneumophila isolates recovered from various sites: two clinical and seven environmental isolates from hot water system biofilm and water and from cooling tower water. After a 1-week acclimation in simulated drinking water, strains were exposed to various copper concentrations (0.8 to 5 mg/liter) for over 672 h. Complete loss of culturability was observed for three isolates following copper exposure to 5 mg/liter for 672 h. Two sequence type 1427 (ST1427)-like isolates were highly sensitive to copper, while the other two, isolated from biofilm samples, maintained higher culturability. The expression of the copper resistance gene copA evaluated by reverse transcription-quantitative PCR (RT-qPCR) was significantly higher for the biofilm isolates. All four ST1427-like isolates were recovered from the same water system during an outbreak. Whole-genome sequencing results confirmed that the four isolates are very close phylogenetically, differing by only 29 single nucleotide polymorphisms, suggesting in situ adaptation to microenvironmental conditions, possibly due to epigenetic regulation. These results indicate that the immediate environment within a building water distribution system influences the tolerance of L. pneumophila to copper. Increased contact of L. pneumophila biofilm strains with copper piping or copper alloys in the heat exchanger might lead to local adaptation. The phenotypic differences observed between water and biofilm isolates from the hot water system of a health care facility warrants further investigation to assess the relevance of evaluating disinfection performances based on water sampling alone.IMPORTANCELegionella pneumophila is a pathogen indigenous to natural and large building water systems in the bulk and the biofilm phases. The immediate environment within a system can impact the tolerance of L. pneumophila to environmental stressors, including copper. In health care facilities, copper levels in water can vary, depending on water quality, plumbing materials, and age. This study evaluated the impact of the isolation site (water versus biofilm, hot water system versus cooling tower) within building water systems. Closely related strains isolated from a health care facility hot water system exhibited variable tolerance to copper stress, shown by differential expression of copA, with biofilm isolates displaying highest expression and tolerance. Relying on the detection of L. pneumophila in water samples following exposure to environmental stressors such as copper may underestimate the prevalence of L. pneumophila, leading to inappropriate risk management strategies and increasing the risk of exposure for vulnerable patients.


Assuntos
Cobre/toxicidade , Água Potável/microbiologia , Hospitais , Legionella pneumophila , Abastecimento de Água , Adaptação Fisiológica , Biofilmes/efeitos dos fármacos , Tolerância a Medicamentos/genética , Genoma Bacteriano , Legionella pneumophila/efeitos dos fármacos , Legionella pneumophila/genética , Legionella pneumophila/isolamento & purificação , Legionella pneumophila/fisiologia , Filogenia
6.
Plant Foods Hum Nutr ; 76(2): 161-169, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33715102

RESUMO

Processing of Russian olive water kefir (RWK), as a fermented functional drink made with Russian olive juice and water kefir grains with high antioxidant activity, into powder is crucial for improving its stability for the commercialization of this product. For the first time, this study aimed to encapsulate water kefir microorganisms and bioactive compounds in RWK using carrier materials to develop a synbiotic functional powder using spray drying as an encapsulation method. The goal was maximizing antioxidant activity, product yield, and survival rate of water kefir microorganisms in the produced Russian olive water kefir powder. The optimal spray drying conditions were observed to be at an inlet air temperature of 120ºC, 35 % feed flow rate, and 7 % concentration of drying aid. The effects of spray drying conditions on the quality of microcapsules were assessed and modeled, and the validity of the model was verified. Also, the spray-dried powder's physicochemical properties were assessed and showed promising microbial and physicochemical characteristics compared with the freeze-dried powder.


Assuntos
Elaeagnaceae , Kefir , Antioxidantes , Liofilização , Kefir/análise , Água
7.
Can J Microbiol ; 64(12): 1030-1041, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30212639

RESUMO

The intracellular pathogen Legionella pneumophila (Lp) is a strict aerobe, surviving and replicating in environments where it frequently encounters reactive oxygen species (ROS), such as the nutrient-poor water environment and its replicative niche inside host cells. In many proteobacteria, the LysR-type regulator OxyR controls the oxidative stress response; however, the importance of the OxyR homologue in Lp is still unclear. Therefore, we undertook the characterization of phenotypes associated with the deletion of oxyR in Lp. Contrary to the wild type, the oxyR deletion mutant exhibits a severe growth defect on charcoal - yeast extract (CYE) agar lacking α-ketoglutarate supplementation. Growth in AYE broth (CYE without agar and charcoal), in amoeba and in human cultured macrophages, and survival in water is unaffected by the deletion. Supplementing CYE agar with antioxidants that neutralize ROS or introducing the oxyR gene in trans rescues the observed growth defect. Moreover, the mutant grows as well as the wild type on CYE plates made with agarose instead of agar, suggesting that a compound present in the latter is responsible for the growth defect phenotype.


Assuntos
Proteínas de Bactérias/fisiologia , Legionella pneumophila/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Ágar , Humanos , Legionella pneumophila/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Deleção de Sequência
8.
Mol Microbiol ; 100(6): 1017-38, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26934669

RESUMO

The bacterium Legionella pneumophila is capable of intracellular replication within freshwater protozoa as well as human macrophages, the latter of which results in the serious pneumonia Legionnaires' disease. A primary factor involved in these host cell interactions is the Dot/Icm Type IV secretion system responsible for translocating effector proteins needed to establish and maintain the bacterial replicative niche. Several regulatory factors have been identified to control the expression of the Dot/Icm system and effectors, one of which is the CpxRA two-component system, suggesting essentiality for virulence. In this study, we generated cpxR, cpxA and cpxRA in-frame null mutant strains to further delineate the role of the CpxRA system in bacterial survival and virulence. We found that cpxR is essential for intracellular replication within Acanthamoeba castellanii, but not in U937-derived macrophages. Transcriptome analysis revealed that CpxRA regulates a large number of virulence-associated proteins including Dot/Icm effectors as well as Type II secreted substrates. Furthermore, the cpxR and cpxRA mutant strains were more sodium resistant than the parental strain Lp02, and cpxRA expression reaches maximal levels during postexponential phase. Taken together, our findings suggest the CpxRA system is a key contributor to L. pneumophila virulence in protozoa via virulence factor regulation.


Assuntos
Proteínas de Bactérias/genética , Legionella pneumophila/genética , Legionella pneumophila/patogenicidade , Proteínas Quinases/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Humanos , Legionella pneumophila/metabolismo , Macrófagos/microbiologia , Mutação , Proteínas Quinases/metabolismo , Células U937 , Virulência , Fatores de Virulência/genética
9.
Can J Microbiol ; 63(6): 535-545, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28264171

RESUMO

The water-borne Gram-negative bacterium Legionella pneumophila (Lp) is the causative agent of Legionnaires' disease. Lp is typically transmitted to humans from water systems, where it grows inside amoebae. Survival of Lp in water is central to its transmission to humans. A transcriptomic study previously identified many genes induced by Lp in water. One such gene, lpg2524, encodes a putative LuxR family transcriptional regulator. It was hypothesized that this gene could be involved in the survival of Lp in water. Deletion of lpg2524 does not affect the growth of Lp in rich medium, in the amoeba Acanthamoeba castellanii, or in human macrophage-like THP-1 cells, showing that Lpg2524 is not required for growth in vitro and in vivo. Nevertheless, deletion of lpg2524 results in a faster colony-forming unit (CFU) reduction in an artificial freshwater medium, Fraquil, indicating that Lpg2524 is important for Lp to survive in water. Overexpression of Lpg2524 also results in a survival defect, suggesting that a precise level of this transcriptional regulator is essential for its function. However, our result shows that Lpg2524 is dispensable for survival in water when Lp is at a high cell density (109 CFU/mL), suggesting that its regulon is regulated by another regulator activated at high cell density.


Assuntos
Genes Bacterianos , Legionella pneumophila/genética , Acanthamoeba castellanii/microbiologia , Animais , Linhagem Celular , Água Doce , Regulação Bacteriana da Expressão Gênica , Humanos , Legionella pneumophila/crescimento & desenvolvimento , Doença dos Legionários/microbiologia , Macrófagos/microbiologia , Proteínas Repressoras , Transativadores , Transcriptoma , Microbiologia da Água
10.
Appl Environ Microbiol ; 82(9): 2783-90, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26921427

RESUMO

Campylobacter jejuniis the leading cause of bacterial gastroenteritis worldwide. Transmission to humans occurs through consumption of contaminated food or water. The conditions affecting the persistence of C. jejuniin the environment are poorly understood. Some protozoa package and excrete bacteria into multilamellar bodies (MLBs). Packaged bacteria are protected from deleterious conditions, which increases their survival. We hypothesized that C. jejuni could be packaged under aerobic conditions by the amoeba Acanthamoeba castellanii or the ciliate Tetrahymena pyriformis, both of which are able to package other pathogenic bacteria.A. castellanii did not produce MLBs containing C. jejuni In contrast, when incubated with T. pyriformis,C. jejuni was ingested, packaged in MLBs, and then expelled into the milieu. The viability of the bacteria inside MLBs was confirmed by microscopic analyses. The kinetics of C. jejuni culturability showed that packaging increased the survival of C. jejuniup to 60 h, in contrast to the strong survival defect seen in ciliate-free culture. This study suggests that T. pyriformis may increase the risk of persistence of C. jejuniin the environment and its possible transmission between different reservoirs in food and potable water through packaging.


Assuntos
Infecções por Campylobacter/transmissão , Campylobacter jejuni/fisiologia , Tetrahymena pyriformis/microbiologia , Acanthamoeba castellanii/crescimento & desenvolvimento , Acanthamoeba castellanii/microbiologia , Acanthamoeba castellanii/ultraestrutura , Aerobiose , Animais , Campylobacter jejuni/ultraestrutura , Vetores de Doenças , Microbiologia de Alimentos , Interações Microbianas , Viabilidade Microbiana , Microscopia Eletrônica de Transmissão , Tetrahymena pyriformis/ultraestrutura , Microbiologia da Água , Abastecimento de Água
11.
Infect Immun ; 83(2): 759-68, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25452553

RESUMO

We identify an N-ethyl-N-nitrosourea (ENU)-induced I23N mutation in the THEMIS protein that causes protection against experimental cerebral malaria (ECM) caused by infection with Plasmodium berghei ANKA. Themis(I23N) homozygous mice show reduced CD4(+) and CD8(+) T lymphocyte numbers. ECM resistance in P. berghei ANKA-infected Themis(I23N) mice is associated with decreased cerebral cellular infiltration, retention of blood-brain barrier integrity, and reduced proinflammatory cytokine production. THEMIS(I23N) protein expression is absent from mutant mice, concurrent with the decreased THEMIS(I23N) stability observed in vitro. Biochemical studies in vitro and functional complementation in vivo in Themis(I23N/+):Lck(-/+) doubly heterozygous mice demonstrate that functional coupling of THEMIS to LCK tyrosine kinase is required for ECM pathogenesis. Damping of proinflammatory responses in Themis(I23N) mice causes susceptibility to pulmonary tuberculosis. Thus, THEMIS is required for the development and ultimately the function of proinflammatory T cells. Themis(I23N) mice can be used to study the newly discovered association of THEMIS (6p22.33) with inflammatory bowel disease and multiple sclerosis.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Malária Cerebral/imunologia , Plasmodium berghei/imunologia , Proteínas/genética , Tuberculose Pulmonar/imunologia , Animais , Barreira Hematoencefálica , Encéfalo/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença Celíaca/genética , Etilnitrosoureia , Expressão Gênica , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intercelular , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parasitemia/patologia , Proteínas/imunologia , Tuberculose Pulmonar/microbiologia
12.
BMC Genomics ; 16: 637, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26306795

RESUMO

BACKGROUND: Legionella pneumophila (Lp) is a water-borne opportunistic pathogen. In water, Lp can survive for an extended period of time until it encounters a permissive host. Therefore, identifying genes that are required for survival in water may help develop strategies to prevent Legionella outbreaks. RESULTS: We compared the global transcriptomic response of Lp grown in a rich medium to that of Lp exposed to an artificial freshwater medium (Fraquil) for 2, 6 and 24 hours. We uncovered successive changes in gene expression required for the successful adaptation to a nutrient-limited water environment. The repression of major pathways involved in cell division, transcription and translation, suggests that Lp enters a quiescent state in water. The induction of flagella associated genes (flg, fli and mot), enhanced-entry genes (enh) and some Icm/Dot effector genes suggests that Lp is primed to invade a suitable host in response to water exposure. Moreover, many genes involved in resistance to antibiotic and oxidative stress were induced, suggesting that Lp may be more tolerant to these stresses in water. Indeed, Lp exposed to water is more resistant to erythromycin, gentamycin and kanamycin than Lp cultured in rich medium. In addition, the bdhA gene, involved in the degradation pathway of the intracellular energy storage compound polyhydroxybutyrate, is also highly expressed in water. Further characterization show that expression of bdhA during short-term water exposure is dependent upon RpoS, which is required for the survival of Lp in water. Deletion of bdhA reduces the survival of Lp in water at 37 °C. CONCLUSIONS: The increase of antibiotic resistance and the importance of bdhA to the survival of Lp in water seem consistent with the observed induction of these genes when Lp is exposed to water. Other genes that are highly induced upon exposure to water could also be necessary for Lp to maintain viability in the water environment.


Assuntos
Regulação Bacteriana da Expressão Gênica , Legionella pneumophila/genética , Transcriptoma , Microbiologia da Água , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Análise por Conglomerados , Farmacorresistência Bacteriana , Perfilação da Expressão Gênica , Genes Bacterianos , Legionella pneumophila/efeitos dos fármacos , Viabilidade Microbiana/genética , Mutação , Reprodutibilidade dos Testes
13.
Appl Environ Microbiol ; 81(3): 918-28, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25416763

RESUMO

Legionella pneumophila is a waterborne pathogen, and survival in the aquatic environment is central to its transmission to humans. Therefore, identifying genes required for its survival in water could help prevent Legionnaires' disease outbreaks. In the present study, we investigate the role of the sigma factor RpoS in promoting survival in water, where L. pneumophila experiences severe nutrient deprivation. The rpoS mutant showed a strong survival defect compared to the wild-type strain in defined water medium. The transcriptome of the rpoS mutant during exposure to water revealed that RpoS represses genes associated with replication, translation, and transcription, suggesting that the mutant fails to shut down major metabolic programs. In addition, the rpoS mutant is transcriptionally more active than the wild-type strain after water exposure. This could be explained by a misregulation of the stringent response in the rpoS mutant. Indeed, the rpoS mutant shows an increased expression of spoT and a corresponding decrease in the level of (p)ppGpp, which is due to the presence of a negative feedback loop between RpoS and SpoT. Therefore, the lack of RpoS causes an aberrant regulation of the stringent response, which prevents the induction of a successful response to starvation.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Legionella pneumophila/genética , Legionella pneumophila/fisiologia , Viabilidade Microbiana , Pirofosfatases/metabolismo , Fator sigma/metabolismo , Microbiologia da Água , Proteínas de Bactérias/genética , Meios de Cultura/química , Retroalimentação , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Pirofosfatases/genética , Fator sigma/genética
14.
Anal Bioanal Chem ; 407(18): 5541-5, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25935681

RESUMO

Legionellosis is a very devastating disease worldwide mainly due to unpredictable outbreaks in man-made water systems. Developing a highly specific and sensitive rapid detection system that detects only metabolically active bacteria is a main priority for water quality assessment. We previously developed a versatile technique for sensitive and specific detection of synthetic RNA. In the present work, we further investigated the performance of the developed biosensor for detection of Legionella pneumophila in complex environmental samples, particularly those containing protozoa. The specificity and sensitivity of the detection system were verified using total RNA extracted from L. pneumophila in spiked water co-cultured with amoebae. We demonstrated that the expression level of ribosomal RNA (rRNA) is extremely dependent on the environmental conditions. The presence of amoebae with L. pneumophila, especially in nutrition-deprived samples, increased the amount of L. pneumophila 15-fold after 1 week as measured through the expression of 16s rRNA. Using the developed surface plasmon resonance imaging (SPRi) detection method, we were also able to successfully detect L. pneumophila within 3 h, both in the presence and absence of amoebae in the complex environmental samples obtained from a cooling water tower. These findings suggest that the developed biosensing system is a viable method for rapid, real-time and effective detection not only for L. pneumophila in environmental samples but also to assess the risk associated with the use of water contaminated with other pathogens.


Assuntos
Legionella pneumophila/isolamento & purificação , Doença dos Legionários/microbiologia , Ressonância de Plasmônio de Superfície/métodos , Microbiologia da Água , Amoeba/isolamento & purificação , Desenho de Equipamento , Humanos , Legionella pneumophila/genética , Limite de Detecção , RNA Ribossômico 16S/genética , Ressonância de Plasmônio de Superfície/economia , Ressonância de Plasmônio de Superfície/instrumentação , Fatores de Tempo
15.
Curr Top Microbiol Immunol ; 376: 53-80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23918178

RESUMO

Legionella pneumophila is a water-borne pathogen that causes a severe lung infection in humans. It is able to replicate inside amoeba in the water environment, and inside lung macrophages in humans. Efficient regulation of gene expression is critical for responding to the conditions that L. pneumophila encounters and for intracellular multiplication in host cells. In the last two decades, many reports have contributed to our understanding of the critical importance of small regulatory RNAs (sRNAs) in the regulatory network of bacterial species. This report presents the current state of knowledge about the sRNAs expressed by L. pneumophila and discusses a few regulatory pathways in which sRNAs should be involved in this pathogen.


Assuntos
Legionella pneumophila/genética , Pequeno RNA não Traduzido/fisiologia , Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/fisiologia , Ferro/metabolismo , Estresse Oxidativo , Fator sigma/fisiologia
16.
Can J Microbiol ; 60(11): 777-81, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25352257

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that can infect susceptible patients suffering from cystic fibrosis, immunosuppression, and severe burns. Nosocomial- and community-acquired infection is likely due to contact with water sources contaminated with P. aeruginosa. Most of what is known about the virulence properties of P. aeruginosa was derived from studies using fairly rich broths, which do not represent conditions found in water, such as low nutrient concentrations. Here, we compare biofilm production, invasion of epithelial cells, cytotoxicity, and pyocyanin production of P. aeruginosa in water with P. aeruginosa grown in rich broth. Since tap water is variable, we used a defined water medium, Fraquil, to ensure reproducibility of the results. We found that P. aeruginosa does not readily form biofilm in Fraquil. Pseudomonas aeruginosa is equally able to attach to and invade epithelial cells but is more cytotoxic after incubation in water for 30 days than when it is grown in rich broth. Moreover, P. aeruginosa produces less pyocyanin when exposed to water. Our results show that P. aeruginosa seems to have different properties when exposed to water than when grown in rich broth.


Assuntos
Células Epiteliais/microbiologia , Água Doce/microbiologia , Pseudomonas aeruginosa/patogenicidade , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular , Meios de Cultura , Fibrose Cística , Humanos , Pulmão , Viabilidade Microbiana , Piocianina/biossíntese , Reprodutibilidade dos Testes , Virulência
17.
PeerJ ; 12: e17197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708341

RESUMO

Waterborne transmission of the bacterium Legionella pneumophila has emerged as a major cause of severe nosocomial infections of major public health impact. The major route of transmission involves the uptake of aerosolized bacteria, often from the contaminated hot water systems of large buildings. Public health regulations aimed at controlling the mesophilic pathogen are generally concerned with acute pasteurization and maintaining high temperatures at the heating systems and throughout the plumbing of hot water systems, but L. pneumophila is often able to survive these treatments due to both bacterium-intrinsic and environmental factors. Previous work has established an experimental evolution system to model the observations of increased heat resistance in repeatedly but unsuccessfully pasteurized L. pneumophila populations. Here, we show rapid fixation of novel alleles in lineages selected for resistance to heat shock and shifts in mutational profile related to increases in the temperature of selection. Gene-level and nucleotide-level parallelisms between independently-evolving lineages show the centrality of the DnaJ/DnaK chaperone system in the heat resistance of L. pneumophila. Inference of epistatic interactions through reverse genetics shows an unexpected interaction between DnaJ/DnaK and the polyhydroxybutyrate-accumulation energy storage mechanism used by the species to survive long-term starvation in low-nutrient environments.


Assuntos
Resposta ao Choque Térmico , Legionella pneumophila , Legionella pneumophila/genética , Resposta ao Choque Térmico/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Temperatura Alta , Evolução Molecular
18.
Microbiol Resour Announc ; 13(6): e0098923, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38682774

RESUMO

Salmonella enterica is the etiological agent responsible for salmonellosis. Here, we report the draft whole genome sequences of 13 S. enterica subsp. enterica isolates from chickens and cows, as well as from previous Canadian Salmonella outbreaks investigated by the Canadian Food Inspection Agency.

19.
Sci Total Environ ; 950: 175136, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39084374

RESUMO

Precise and rapid methods are needed to improve monitoring approaches of L. pneumophila (Lp) in cooling towers (CTs) to allow timely operational adjustments and prevent outbreaks. The performance of liquid culture (ASTM D8429-21) and an online qPCR device were first compared to conventional filter plate culture (ISO 11731-2017), qPCR and semi-automated qPCR at three spiked concentrations of Lp (serogroup 1) validated by flow cytometry (total/viable cell count). The most accurate was qPCR, followed by liquid culture, online and semi-automated qPCR, and lastly, by a significant margin, filter plate culture. An industrial CT system was monitored using liquid and direct plate culture by the facility, qPCR and online qPCR. Direct plate and liquid culture results agreed at regulatory sampling point, supporting the use of the faster liquid culture for monitoring culturable Lp. During initial operation, qPCR and online qPCR results were within one log of culture at the primary pump before deviating after first cleaning. Other points revealed high spatial variability of Lp. The secondary pumps and chiller had the most positivity and highest concentrations by both qPCR and liquid culture compared to the basin and infeed tank. Altogether, this suggests that results from monthly compliance sampling at a single location with plate culture are not representative of Lp risks in this CT due to the high temporal and spatial variability. The primary pump, rather than the CT basin, should be designated for sampling, as it is representative of the health risk. An annual multi point survey of the system should be conducted to identify and target Lp hot spots. Generally, a combination of liquid culture for compliance and frequent qPCR for process control provides a more agile and robust monitoring scheme than plate culture alone, enabling early treatment adjustments, due to lower limit of detection (LOD) and turnover time.


Assuntos
Monitoramento Ambiental , Legionella pneumophila , Microbiologia da Água , Monitoramento Ambiental/métodos , Ar Condicionado , Reação em Cadeia da Polimerase em Tempo Real
20.
Microbiology (Reading) ; 159(Pt 8): 1649-1660, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23728622

RESUMO

Hfq is a small RNA-binding protein involved in the post-transcriptional regulation of gene expression by affecting the stability of the mRNA and by mediating efficient pairing between small regulatory RNAs and their target mRNAs. In Legionella pneumophila, the aetiological agent of Legionnaires' disease, mutation of hfq results in increased duration of the lag phase and reduced growth in low-iron medium. In an effort to uncover genes potentially regulated by Hfq, the transcriptome of an hfq mutant strain was compared to that of the wild-type. Unexpectedly, many genes located within a 100 kb genomic island, including a section of the previously identified efflux island, were overexpressed in the hfq mutant strain. Since this island contains a putative conjugative system and an integrase, it was postulated that it could be a new integrated mobile genetic element. PCR analysis revealed that this region exists both as an integrated and as an episomal form in the cell population and that it undergoes differential excision in the hfq mutant background, which was further confirmed by trans-complementation of the hfq mutation. This new plasmid-like element was named pLP100. Differential excision did not affect the copy number of pLP100 at the population level. This region contains a copper efflux pump encoded by copA, and increased resistance to copper was observed for the hfq mutant strain that was abrogated in the complemented strain. A strain carrying a mutation of hfq and a deletion of the right side recombination site, attR, showed that overexpression of pLP100 genes and increased copper resistance in the hfq mutant strain were dependent upon excision of pLP100.


Assuntos
Deleção de Genes , Fator Proteico 1 do Hospedeiro/genética , Sequências Repetitivas Dispersas , Legionella pneumophila/genética , Transcriptoma , Genoma Bacteriano , Plasmídeos , Reação em Cadeia da Polimerase , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA