Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(45): 28402-28411, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106420

RESUMO

The circadian clock is based on a transcriptional feedback loop with an essential time delay before feedback inhibition. Previous work has shown that PERIOD (PER) proteins generate circadian time cues through rhythmic nuclear accumulation of the inhibitor complex and subsequent interaction with the activator complex in the feedback loop. Although this temporal manifestation of the feedback inhibition is the direct consequence of PER's cytoplasmic trafficking before nuclear entry, how this spatial regulation of the pacemaker affects circadian timing has been largely unexplored. Here we show that circadian rhythms, including wake-sleep cycles, are lengthened and severely unstable if the cytoplasmic trafficking of PER is disrupted by any disease condition that leads to increased congestion in the cytoplasm. Furthermore, we found that the time delay and robustness in the circadian clock are seamlessly generated by delayed and collective phosphorylation of PER molecules, followed by synchronous nuclear entry. These results provide clear mechanistic insight into why circadian and sleep disorders arise in such clinical conditions as metabolic and neurodegenerative diseases and aging, in which the cytoplasm is congested.


Assuntos
Citoplasma/metabolismo , Homeostase , Transporte Proteico/fisiologia , Sono/fisiologia , Células 3T3-L1 , Animais , Proteína 5 Relacionada à Autofagia , Proteínas CLOCK/metabolismo , Linhagem Celular , Relógios Circadianos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
2.
Nature ; 456(7221): 511-5, 2008 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-18953332

RESUMO

Many neuromuscular conditions are characterized by an exaggerated exercise-induced fatigue response that is disproportionate to activity level. This fatigue is not necessarily correlated with greater central or peripheral fatigue in patients, and some patients experience severe fatigue without any demonstrable somatic disease. Except in myopathies that are due to specific metabolic defects, the mechanism underlying this type of fatigue remains unknown. With no treatment available, this form of inactivity is a major determinant of disability. Here we show, using mouse models, that this exaggerated fatigue response is distinct from a loss in specific force production by muscle, and that sarcolemma-localized signalling by neuronal nitric oxide synthase (nNOS) in skeletal muscle is required to maintain activity after mild exercise. We show that nNOS-null mice do not have muscle pathology and have no loss of muscle-specific force after exercise but do display this exaggerated fatigue response to mild exercise. In mouse models of nNOS mislocalization from the sarcolemma, prolonged inactivity was only relieved by pharmacologically enhancing the cGMP signal that results from muscle nNOS activation during the nitric oxide signalling response to mild exercise. Our findings suggest that the mechanism underlying the exaggerated fatigue response to mild exercise is a lack of contraction-induced signalling from sarcolemma-localized nNOS, which decreases cGMP-mediated vasomodulation in the vessels that supply active muscle after mild exercise. Sarcolemmal nNOS staining was decreased in patient biopsies from a large number of distinct myopathies, suggesting a common mechanism of fatigue. Our results suggest that patients with an exaggerated fatigue response to mild exercise would show clinical improvement in response to treatment strategies aimed at improving exercise-induced signalling.


Assuntos
Modelos Animais de Doenças , Exercício Físico/fisiologia , Fadiga/fisiopatologia , Óxido Nítrico Sintase Tipo I/metabolismo , Sarcolema/enzimologia , Animais , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5 , Edema/tratamento farmacológico , Edema/etiologia , Edema/prevenção & controle , Ativação Enzimática , Fadiga/patologia , Hemodinâmica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/citologia , Músculo Esquelético/enzimologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/enzimologia , Doenças Musculares/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/deficiência , Óxido Nítrico Sintase Tipo I/genética , Inibidores da Fosfodiesterase 5 , Transporte Proteico , Transdução de Sinais
3.
Behav Brain Res ; 438: 114216, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36400236

RESUMO

BACKGROUND: Adolescents have a natural tendency to be night owls, maintaining delayed circadian rhythms, and this rhythm is in direct conflict with the early wake times required during the school year. This leads to 'social jetlag', chronic circadian stress or desynchrony (CD) in which the rhythm of the intrinsic body clock is out of sync with behavior. CD increases alcohol intake in adolescents and adults, yet it is unknown whether adolescent CD also increases long-term addiction risk. The goal of this study was to determine whether adolescent alcohol intake in CD would increase adult alcohol preference and intake in male C57BL/6 J mice. METHODS: We measured free access alcohol intake, water intake, and wheel-running activity during a normal 12 h (h) baseline photoperiod and then during shifting lighting schedules (Experiment 1) or a shortened circadian day (Experiment 2). RESULTS: In Experiment 1, altered lighting produced a persistent increase in adolescent alcohol intake and in binge-like drinking (drinking at least 5 licks per minute, with no more than a 1 min break in drinking) in adulthood, but only a transient increase in total alcohol intake for the first week after alcohol was reintroduced in adulthood. In Experiment 2, the circadian shift produced a significant increase in alcohol intake in both adolescence and adulthood. Molecular analysis demonstrated changes in plasma corticosterone and neuronal markers of stress and addiction at the conclusion of these experiments in the CD and alcohol-exposed groups. CONCLUSIONS: Thus, we conclude that circadian stress during adolescence is sufficient to produce a long-lasting susceptibility to alcohol use.


Assuntos
Ritmo Circadiano , Etanol , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Iluminação , Corticosterona
4.
Front Cell Neurosci ; 17: 1321632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283751

RESUMO

The etiology of schizophrenia (SCZ) is multifactorial, and depending on a host of genetic and environmental factors. Two putative SCZ susceptibility genes, Disrupted-in-Schizophrenia-1 (DISC1) and reelin (RELN), interact at a molecular level, suggesting that combined disruption of both may lead to an intensified SCZ phenotype. To examine this gene-gene interaction, we produced a double mutant mouse line. Mice with heterozygous RELN haploinsufficiency were crossed with mice expressing dominant-negative c-terminal truncated human DISC1 to produce offspring with both mutations (HRM/DISC1 mice). We used an array of behavioral tests to generate a behavioral phenotype for these mice, then examined the prefrontal cortex and hippocampus using western blotting and immunohistochemistry to probe for SCZ-relevant molecular and cellular alterations. Compared to wild-type controls, HRM/DISC1 mice demonstrated impaired pre-pulse inhibition, altered cognition, and decreased activity. Diazepam failed to rescue anxiety-like behaviors, paradoxically increasing activity in HRM/DISC1 mice. At a cellular level, we found increased α1-subunit containing GABA receptors in the prefrontal cortex, and a reduction in fast-spiking parvalbumin positive neurons. Maturation of adult-born neurons in the hippocampus was also altered in HRM/DISC1 mice. While there was no difference in the total number proliferating cells, more of these cells were in immature stages of development. Homozygous DISC1 mutation combined with RELN haploinsufficiency produces a complex phenotype with neuropsychiatric characteristics relevant to SCZ and related disorders, expanding our understanding of how multiple genetic susceptibility factors might interact to influence the variable presentation of these disorders.

5.
Proc Natl Acad Sci U S A ; 106(31): 12573-9, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19633189

RESUMO

Skeletal muscle basal lamina is linked to the sarcolemma through transmembrane receptors, including integrins and dystroglycan. The function of dystroglycan relies critically on posttranslational glycosylation, a common target shared by a genetically heterogeneous group of muscular dystrophies characterized by alpha-dystroglycan hypoglycosylation. Here we show that both dystroglycan and integrin alpha7 contribute to force-production of muscles, but that only disruption of dystroglycan causes detachment of the basal lamina from the sarcolemma and renders muscle prone to contraction-induced injury. These phenotypes of dystroglycan-null muscles are recapitulated by Large(myd) muscles, which have an intact dystrophin-glycoprotein complex and lack only the laminin globular domain-binding motif on alpha-dystroglycan. Compromised sarcolemmal integrity is directly shown in Large(myd) muscles and similarly in normal muscles when arenaviruses compete with matrix proteins for binding alpha-dystroglycan. These data provide direct mechanistic insight into how the dystroglycan-linked basal lamina contributes to the maintenance of sarcolemmal integrity and protects muscles from damage.


Assuntos
Membrana Basal/fisiologia , Distroglicanas/fisiologia , Laminina/fisiologia , Sarcolema/fisiologia , Animais , Sítios de Ligação , Distroglicanas/química , Glicosilação , Integrinas/fisiologia , Laminina/química , Vírus da Coriomeningite Linfocítica , Camundongos , Distrofia Muscular Animal/etiologia
6.
Methods Mol Biol ; 2303: 637-644, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34626412

RESUMO

Heparan sulfate (HS) is a linear polysaccharide with complex structures and modulates a wide range of biological functions. Elucidating the structure-function relationship of HS has been challenging. Recently, we generated a HS mutant mouse lung endothelial cell library by systematic deletion of HS genes expressed in the cell individually or in their combination. Here, we describe the experimental procedure using the mutant cell library to determine the structure-function relationship of HS in the regulation of FGF2-FGFR1 signaling at the levels of cell surface FGF2 binding and the downstream intracellular signaling activation. Our results demonstrated that strictly defined fine structure is required for HS to act as a co-receptor for FGF2-FGFR1 signaling.


Assuntos
Transdução de Sinais , Animais , Membrana Celular/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Heparitina Sulfato , Camundongos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Relação Estrutura-Atividade
7.
Sci Rep ; 12(1): 4352, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288626

RESUMO

Roundabout 4 (Robo4) is a transmembrane receptor that expresses specifically in endothelial cells. Soluble Robo4 was reported in the human plasma and mouse serum and is inhibitory towards FGF- and VEGF-induced angiogenesis. It remains unknown how soluble Robo4 is generated and if soluble Robo4 regulates additional angiogenic signaling. Here, we report soluble Robo4 is the product of constitutive ectodomain shedding of endothelial cell surface Robo4 by disintegrin metalloproteinases ADAM10 and ADAM17 and acts to inhibit angiogenic Slit3 signaling. Meanwhile, the ligand Slit3 induces cell surface receptor Robo4 endocytosis to shield Robo4 from shedding, showing Slit3 inhibits Robo4 shedding to enhance Robo4 signaling. Our study delineated ADAM10 and ADAM17 are Robo4 sheddases, and ectodomain shedding, including negative regulation by its ligand Slit3, represents a novel control mechanism of Robo4 signaling in angiogenesis.


Assuntos
Células Endoteliais , Proteínas de Membrana , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Animais , Células Endoteliais/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Camundongos , Neovascularização Patológica/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
8.
J Physiol ; 589(Pt 5): 1195-208, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21224224

RESUMO

The dystrophin­glycoprotein complex (DGC) provides an essential link from the muscle fibre cytoskeleton to the extracellular matrix. In dystrophic humans and mdx mice, mutations in the dystrophin gene disrupt the structure of the DGC causing severe damage to muscle fibres. In frog muscles, transmission of force laterally from an activated fibre to the muscle surface occurs without attenuation, but lateral transmission of force has not been demonstrated in mammalian muscles. A unique 'yoke' apparatus was developed that attached to the epimysium of muscles midway between the tendons and enabled the measurement of lateral force. We now report that in muscles of young wild-type (WT) mice and rats, compared over a wide range of longitudinal forces, forces transmitted laterally showed little or no decrement. In contrast, for muscles of mdx mice and very old rats, forces transmitted laterally were impaired severely. Muscles of both mdx mice and very old rats showed major reductions in the expression of dystrophin. We conclude that during contractions, forces developed by skeletal muscles of young WT mice and rats are transmitted laterally from fibre to fibre through the DGC without decrement. In contrast, in muscles of dystrophic or very old animals, disruptions in DGC structure and function impair lateral transmission of force causing instability and increased susceptibility of fibres to contraction-induced injury.


Assuntos
Envelhecimento/fisiologia , Contração Muscular/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Distrofia Muscular Animal/fisiopatologia , Animais , Western Blotting , Distrofina/genética , Distrofina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular Animal/metabolismo , Ratos
9.
J Muscle Res Cell Motil ; 32(1): 39-48, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21710358

RESUMO

Tension and regional average sarcomere length (L(s)) behavior were examined during repeated stretches of single, permeabilized, relaxed muscle fibers isolated from the soleus muscles of rats. We tested the hypothesis that during stretches of single permeabilized fibers, the global fiber strain is distributed non-uniformly along the length of a relaxed fiber in a repeatable pattern. Each fiber was subjected to eight constant-velocity stretch and release cycles with a strain of 32% and strain rate of 54% s(-1). Stretch-release cycles were separated by a 4.5 min interval. Throughout each stretch-release cycle, sarcomere lengths were measured using a laser diffraction technique in which 20 contiguous sectors along the entire length of a fiber segment were scanned within 2 ms. The results revealed that: (1) the imposed length change was not distributed uniformly along the fiber, (2) the first stretch-release cycle differed from subsequent cycles in passive tension and in the distribution of global fiber strain, and (3) a characteristic "signature" for the L(s) response emerged after cycle 3. The findings support the conclusions that longitudinal heterogeneity exists in the passive stiffness of individual muscle fibers and that preconditioning of fibers with stretch-release cycles produces a stable pattern of sarcomere strains.


Assuntos
Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Sarcômeros/fisiologia , Animais , Masculino , Músculo Esquelético/lesões , Ratos , Relaxamento , Entorses e Distensões , Estresse Mecânico
10.
Proc Natl Acad Sci U S A ; 105(1): 388-93, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18162552

RESUMO

Tendons play a significant role in the modulation of forces transmitted between bones and skeletal muscles and consequently protect muscle fibers from contraction-induced, or high-strain, injuries. Myostatin (GDF-8) is a negative regulator of muscle mass. Inhibition of myostatin not only increases the mass and maximum isometric force of muscles, but also increases the susceptibility of muscle fibers to contraction-induced injury. We hypothesized that myostatin would regulate the morphology and mechanical properties of tendons. The expression of myostatin and the myostatin receptors ACVR2B and ACVRB was detectable in tendons. Surprisingly, compared with wild type (MSTN(+/+)) mice, the tendons of myostatin-null mice (MSTN(-/-)) were smaller and had a decrease in fibroblast density and a decrease in the expression of type I collagen. Tendons of MSTN(-/-) mice also had a decrease in the expression of two genes that promote tendon fibroblast proliferation: scleraxis and tenomodulin. Treatment of tendon fibroblasts with myostatin activated the p38 MAPK and Smad2/3 signaling cascades, increased cell proliferation, and increased the expression of type I collagen, scleraxis, and tenomodulin. Compared with the tendons of MSTN(+/+) mice, the mechanical properties of tibialis anterior tendons from MSTN(-/-) mice had a greater peak stress, a lower peak strain, and increased stiffness. We conclude that, in addition to the regulation of muscle mass and force, myostatin regulates the structure and function of tendon tissues.


Assuntos
Regulação da Expressão Gênica , Tendões/anormalidades , Tendões/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fibroblastos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Modelos Genéticos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Músculos/patologia , Miostatina
11.
Front Mol Biosci ; 8: 649575, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179075

RESUMO

The severe acute respiratory syndrome (SARS)-like coronavirus disease (COVID-19) is caused by SARS-CoV-2 and has been a serious threat to global public health with limited treatment. Cellular heparan sulfate (HS) has been found to bind SARS-CoV-2 spike protein (SV2-S) and co-operate with cell surface receptor angiotensin-converting enzyme 2 (ACE2) to mediate SARS-CoV-2 infection of host cells. In this study, we determined that host cell surface SV2-S binding depends on and correlates with host cell surface HS expression. This binding is required for SARS-Cov-2 virus to infect host cells and can be blocked by heparin lyase, HS antagonist surfen, heparin, and heparin derivatives. The binding of heparin/HS to SV2-S is mainly determined by its overall sulfation with potential, minor contribution of specific SV2-S binding motifs. The higher binding affinity of SV2-S G614 mutant to heparin and upregulated HS expression may be one of the mechanisms underlying the higher infectivity of the SARS-CoV-2 G614 variant and the high vulnerability of lung cancer patients to SARS-CoV-2 infection, respectively. The higher host cell infection by SARS-CoV-2 G614 variant pseudovirus and the increased infection caused by upregulated HS expression both can be effectively blocked by heparin lyase and heparin, and possibly surfen and heparin derivatives too. Our findings support blocking HS-SV2-S interaction may provide one addition to achieve effective prevention and/treatment of COVID-19.

12.
Sci Rep ; 11(1): 4746, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637777

RESUMO

Time-of-day effects have been noted in a wide variety of cognitive behavioral tests, and perturbation of the circadian system, either at the level of the master clock in the SCN or downstream, impairs hippocampus-dependent learning and memory. A number of kinases, including the serine-threonine casein kinase 1 (CK1) isoforms CK1δ/ε, regulate the timing of the circadian period through post-translational modification of clock proteins. Modulation of these circadian kinases presents a novel treatment direction for cognitive deficits through circadian modulation. Here, we tested the potential for PF-670462, a small molecule inhibitor of CK1δ/ε, to improve cognitive performance in C57BL/6J mice in an array of behavioral tests. Compared to vehicle-treated mice tested at the same time of the circadian day, mice treated with PF-670462 displayed better recall of contextual fear conditioning, made fewer working memory errors in the radial arm water maze, and trained more efficiently in the Morris Water Maze. These benefits were accompanied by increased expression of activity-regulated cytoskeleton-associated protein (Arc) in the amygdala in response to an acute learning paradigm. Our results suggest the potential utility of CK1δ/ε inhibition in improving time-of-day cognitive performance.


Assuntos
Caseína Quinase 1 épsilon/efeitos dos fármacos , Caseína Quinase Idelta/efeitos dos fármacos , Cognição , Pirimidinas/farmacologia , Tonsila do Cerebelo/metabolismo , Animais , Proteínas CLOCK/metabolismo , Condicionamento Psicológico , Proteínas do Citoesqueleto/metabolismo , Aprendizagem , Aprendizagem em Labirinto , Memória , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo
13.
Am J Physiol Cell Physiol ; 299(6): C1430-40, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20844247

RESUMO

The glycosylation of dystroglycan is required for its function as a high-affinity laminin receptor, and loss of dystroglycan glycosylation results in congenital muscular dystrophy. The purpose of this study was to investigate the functional defects in slow- and fast-twitch muscles of glycosylation-deficient Large(myd) mice. While a partial alteration in glycosylation of dystroglycan in heterozygous Large(myd/+) mice was not sufficient to alter muscle function, homozygous Large(myd/myd) mice demonstrated a marked reduction in specific force in both soleus and extensor digitorum longus (EDL) muscles. Although EDL muscles from Large(myd/myd) mice were highly susceptible to lengthening contraction-induced injury, Large(myd/myd) soleus muscles surprisingly showed no greater force deficit compared with wild-type soleus muscles even after five lengthening contractions. Despite no increased susceptibility to injury, Large(myd/myd) soleus muscles showed loss of dystroglycan glycosylation and laminin binding activity and dystrophic pathology. Interestingly, we show that soleus muscles have a markedly higher sarcolemma expression of ß(1)-containing integrins compared with EDL and gastrocnemius muscles. Therefore, we conclude that ß(1)-containing integrins play an important role as matrix receptors in protecting muscles containing slow-twitch fibers from contraction-induced injury in the absence of dystroglycan function, and that contraction-induced injury appears to be a separable phenotype from the dystrophic pathology of muscular dystrophy.


Assuntos
Distroglicanas/metabolismo , Contração Muscular , Músculo Esquelético/lesões , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/metabolismo , Animais , Glicosilação , Integrina beta1/metabolismo , Laminina/metabolismo , Camundongos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/patologia , Músculo Esquelético/patologia , Distrofia Muscular Animal/patologia , Distrofia Muscular Animal/fisiopatologia , Ratos , Ratos Sprague-Dawley , Sarcolema/metabolismo , Sarcolema/patologia
14.
Biochem Biophys Res Commun ; 403(1): 149-53, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21056548

RESUMO

Reactive oxygen species (ROS) play a role in a number of degenerative conditions including osteoporosis. Mice deficient in Cu,Zn-superoxide dismutase (Sod1) (Sod1(-/-) mice) have elevated oxidative stress and decreased muscle mass and strength compared to wild-type mice (WT) and appear to have an accelerated muscular aging phenotype. Thus, Sod1(-/-) mice may be a good model for evaluating the effects of free radical generation on diseases associated with aging. In this experiment, we tested the hypothesis that the structural integrity of bone as measured by bending stiffness (EI; N/mm(2)) and strength (MPa) is diminished in Sod1(-/-) compared to WT mice. Femurs were obtained from male and female WT and Sod1(-/-) mice at 8months of age and three-point bending tests were used to determine bending stiffness and strength. Bones were also analyzed for bone mineral density (BMD; mg/cc) using micro-computed tomography. Femurs were approximately equal in length across all groups, and there were no significant differences in BMD or EI with respect to gender in either genotype. Although male and female mice demonstrated similar properties within each genotype, Sod1(-/-) mice exhibited lower BMD and EI of femurs from both males and females compared with gender matched WT mice. Strength of femurs was also lower in Sod1(-/-) mice compared to WT as well as between genders. These data indicate that increased oxidative stress, due to the deficiency of Sod1 is associated with decreased bone stiffness and strength and Sod1(-/-) mice may represent an appropriate model for studying disease processes in aging bone.


Assuntos
Envelhecimento/patologia , Densidade Óssea , Osso e Ossos/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Osso e Ossos/diagnóstico por imagem , Elasticidade , Feminino , Masculino , Camundongos , Camundongos Knockout , Osteoporose/genética , Osteoporose/patologia , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Tomografia Computadorizada por Raios X
15.
Muscle Nerve ; 42(3): 385-93, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20544940

RESUMO

Daptomycin is a lipopeptide antibiotic with strong bactericidal effects against Gram-positive bacteria and minor side effects on skeletal muscles. The type and magnitude of the early effect of daptomycin on skeletal muscles of rats was quantified by histopathology, examination of contractile properties, Evans Blue Dye uptake, and effect on the patch repair process. A single dose of daptomycin of up to 200 mg/kg had no effect on muscle fibers. A dose of 150 mg/kg of daptomycin, twice per day for 3 days, produced a small number of myofibers (

Assuntos
Antibacterianos/toxicidade , Daptomicina/toxicidade , Músculo Esquelético/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Peso Corporal/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Daptomicina/administração & dosagem , Azul Evans , Imuno-Histoquímica , Injeções Intravenosas , Masculino , Microscopia de Fluorescência , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sarcolema/efeitos dos fármacos
16.
Free Radic Biol Med ; 132: 19-23, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30670156

RESUMO

Mice lacking Cu/Zn-superoxide dismutase (Sod1-/- or Sod1KO mice) show high levels of oxidative stress/damage and a 30% decrease in lifespan. The Sod1KO mice also show many phenotypes of accelerated aging with the loss of muscle mass and function being one of the most prominent aging phenotypes. Using various genetic models targeting the expression of Cu/Zn-superoxide dismutase to specific tissues, we evaluated the role of motor neurons and skeletal muscle in the accelerated loss of muscle mass and function in Sod1KO mice. Our data are consistent with the sarcopenia in Sod1KO mice arising through a two-hit mechanism involving both motor neurons and skeletal muscle. Sarcopenia is initiated in motor neurons leading to a disruption of neuromuscular junctions that results in mitochondrial dysfunction and increased generation of reactive oxygen species (ROS) in skeletal muscle. The mitochondrial ROS generated in muscle feedback on the neuromuscular junctions propagating more disruption of neuromuscular junctions and more ROS production by muscle resulting in a vicious cycle that eventually leads to disaggregation of neuromuscular junctions, denervation, and loss of muscle fibers.


Assuntos
Envelhecimento/genética , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Junção Neuromuscular/fisiologia , Sarcopenia/metabolismo , Superóxido Dismutase-1/metabolismo , Animais , Humanos , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética , Estresse Oxidativo , Sarcopenia/genética , Superóxido Dismutase-1/genética
17.
Biophys J ; 95(4): 1890-901, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18469072

RESUMO

A laser-diffraction technique was developed that rapidly reports the lengths of sarcomeres (L(s)) in serially connected sectors of permeabilized single fibers. The apparatus translates a laser beam along the entire length of a fiber segment within 2 ms, with brief stops at each of 20 contiguous sectors. We tested the hypothesis that during lengthening contractions, when maximally activated fibers are stretched, sectors that contain the longer sarcomeres undergo greater increases in L(s) than those containing shorter sarcomeres. Fibers (n = 16) were obtained from the soleus muscles of adult male rats and the middle portions (length = 1.05 +/- 0.11 mm; mean +/- SD) were investigated. Single stretches of strain 27% and a strain rate of 54% s(-1) were initiated at maximum isometric stress and resulted in a 19 +/- 9% loss in isometric stress. The data on L(s) revealed that 1), the stretch was not distributed uniformly among the sectors, and 2), during the stretch, sectors at long L(s) before the stretch elongated more than those at short lengths. The findings support the hypothesis that during stretches of maximally activated skeletal muscles, sarcomeres at longer lengths are more susceptible to damage by excessive strain.


Assuntos
Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/fisiologia , Músculo Esquelético/ultraestrutura , Sarcômeros/fisiologia , Sarcômeros/ultraestrutura , Animais , Células Cultivadas , Masculino , Ratos , Ratos Endogâmicos F344 , Estatística como Assunto
18.
FASEB J ; 21(9): 2195-204, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17360850

RESUMO

Duchenne muscular dystrophy (DMD) is the most common, lethal genetic disorder of children. A number of animal models of muscular dystrophy exist, but the most effective model for characterizing the structural and functional properties of dystrophin and therapeutic interventions has been the mdx mouse. Despite the approximately 20 years of investigations of the mdx mouse, the impact of the disease on the life span of mdx mice and the cause of death remain unresolved. Consequently, a life span study of the mdx mouse was designed that included cohorts of male and female mdx and wild-type C57BL/10 mice housed under specific pathogen-free conditions with deaths restricted to natural causes and with examination of the carcasses for pathology. Compared with wild-type mice, both mdx male and female mice had reduced life spans and displayed a progressively dystrophic muscle histopathology. Surprisingly, old mdx mice were prone to develop muscle tumors that resembled the human form of alveolar rhabdomyosarcoma, a cancer associated with poor prognosis. Rhabdomyosarcomas have not been observed previously in nontransgenic mice. The results substantiate the mdx mouse as an important model system for studies of the pathogenesis of and potential remedies for DMD.


Assuntos
Longevidade/genética , Camundongos Endogâmicos mdx/fisiologia , Neoplasias Musculares/genética , Rabdomiossarcoma Alveolar/genética , Animais , Neoplasias Ósseas/genética , Diafragma/patologia , Extremidades , Feminino , Predisposição Genética para Doença , Hemangiossarcoma/genética , Linfoma não Hodgkin/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx/genética , Neoplasias Musculares/patologia , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Miocárdio/patologia , Osteossarcoma/genética , Rabdomiossarcoma Alveolar/patologia , Organismos Livres de Patógenos Específicos , Língua/patologia
19.
J Biomech ; 41(2): 465-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18031752

RESUMO

Skeletal muscle is composed of muscle fibers and an extracellular matrix (ECM). The collagen fiber network of the ECM is a major contributor to the passive force of skeletal muscles at high strain. We investigated the effect of aging on the biomechanical and structural properties of epimysium of the tibialis anterior muscles (TBA) of rats to understand the mechanisms responsible for the age-related changes. The biomechanical properties were tested directly in vitro by uniaxial extension of epimysium. The presence of age-related changes in the arrangement and size of the collagen fibrils in the epimysium was examined by scanning electron microscopy (SEM). A mathematical model was subsequently developed based on the structure-function relationships that predicted the compliance of the epimysium. Biomechanically, the epimysium from old rats was much stiffer than that of the young rats. No differences were found in the ultrastructure and thickness of the epimysium or size of the collagen fibrils between young and old rats. The changes in the arrangement and size of the collagen fibrils do not appear to be the principal cause of the increased stiffness of the epimysium from the old rats. Other changes in the structural composition of the epimysium from old rats likely has a strong effect on the increased stiffness. The age-related increase in the stiffness of the epimysium could play an important role in the impaired lateral force transmission in the muscles of the elderly.


Assuntos
Envelhecimento/fisiologia , Matriz Extracelular/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Animais , Anisotropia , Fenômenos Biomecânicos/métodos , Simulação por Computador , Elasticidade , Ratos , Ratos Endogâmicos Lew , Estresse Mecânico
20.
J Biomech ; 41(1): 1-10, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17904147

RESUMO

A micromechanical model has been developed to investigate the mechanical properties of the epimysium. In the present model, the collagen fibers in the epimysium are embedded randomly in the ground substance. Two parallel wavy collagen fibers and the surrounding ground substance are used as the repeat unit (unit cell), and the epimysium is considered as an aggregate of unit cells. Each unit cell is distributed in the epimysium with some different angle to the muscle fiber direction. The model allows the progressive straightening of the collagen fiber as well as the effects of fiber reorientation. The predictions of the model compare favorably against experiment. The effects of the collagen fiber volume fraction, collagen fiber waviness at the rest length and the mechanical properties of the collagen fibers and the ground substance are analyzed. This model allows the analysis of mechanical behavior of most soft tissues if appropriate experimental data are available.


Assuntos
Colágeno/fisiologia , Matriz Extracelular/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Algoritmos , Animais , Fenômenos Biomecânicos , Elasticidade , Ratos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA