Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 483(7387): 104-7, 2012 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-22307274

RESUMO

Dynamic variations in the structure of chromatin influence virtually all DNA-related processes in eukaryotes and are controlled in part by post-translational modifications of histones. One such modification, the acetylation of lysine 56 (H3K56ac) in the amino-terminal α-helix (αN) of histone H3, has been implicated in the regulation of nucleosome assembly during DNA replication and repair, and nucleosome disassembly during gene transcription. In Saccharomyces cerevisiae, the histone chaperone Rtt106 contributes to the deposition of newly synthesized H3K56ac-carrying H3-H4 complex on replicating DNA, but it is unclear how Rtt106 binds H3-H4 and specifically recognizes H3K56ac as there is no apparent acetylated lysine reader domain in Rtt106. Here, we show that two domains of Rtt106 are involved in a combinatorial recognition of H3-H4. An N-terminal domain homodimerizes and interacts with H3-H4 independently of acetylation while a double pleckstrin-homology (PH) domain binds the K56-containing region of H3. Affinity is markedly enhanced upon acetylation of K56, an effect that is probably due to increased conformational entropy of the αN helix of H3. Our data support a mode of interaction where the N-terminal homodimeric domain of Rtt106 intercalates between the two H3-H4 components of the (H3-H4)(2) tetramer while two double PH domains in the Rtt106 dimer interact with each of the two H3K56ac sites in (H3-H4)(2). We show that the Rtt106-(H3-H4)(2) interaction is important for gene silencing and the DNA damage response.


Assuntos
Histonas/química , Histonas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Acetilação , Animais , Sítios de Ligação , Cristalografia por Raios X , Dano ao DNA , Inativação Gênica , Instabilidade Genômica , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Chaperonas Moleculares/genética , Mutação/genética , Maleabilidade , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Especificidade por Substrato , Xenopus laevis
2.
Proc Natl Acad Sci U S A ; 110(33): 13594-9, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23904484

RESUMO

Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis.


Assuntos
Candida albicans/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Hifas/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Piperazinas/farmacologia , Bibliotecas de Moléculas Pequenas/análise , Animais , Candida albicans/fisiologia , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Hifas/crescimento & desenvolvimento , Camundongos , Nematoides , Piperazinas/química , Poliestirenos/química
3.
J Biol Chem ; 287(14): 10753-60, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22337870

RESUMO

The yeast histone chaperone Rtt106 is involved in de novo assembly of newly synthesized histones into nucleosomes during DNA replication and plays a role in regulating heterochromatin silencing and maintaining genomic integrity. The interaction of Rtt106 with H3-H4 is modulated by acetylation of H3 lysine 56 catalyzed by the lysine acetyltransferase Rtt109. Using affinity purification strategies, we demonstrate that Rtt106 interacts with (H3-H4)(2) heterotetramers in vivo. In addition, we show that Rtt106 undergoes homo-oligomerization in vivo and in vitro, and mutations in the N-terminal homodimeric domain of Rtt106 that affect formation of Rtt106 oligomers compromise the function of Rtt106 in transcriptional silencing and response to genotoxic stress and the ability of Rtt106 to bind (H3-H4)(2). These results indicate that Rtt106 deposits H3-H4 heterotetramers onto DNA and provide the first description of a H3-H4 chaperone binding to (H3-H4)(2) heterotetramers in vivo.


Assuntos
Histonas/química , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Nucleossomos/metabolismo , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Dano ao DNA , Inativação Gênica , Heterocromatina/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Estrutura Quaternária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
4.
Dev Biol ; 303(2): 536-48, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17208216

RESUMO

The transcriptional Mediator (MED) is a multiprotein complex that transmits information from transcription factors to RNA polymerase II (PolII) to regulate transcription. At present, the role of distinct MED subunits in general transcription versus transcription stimulated by specific signaling pathways is unclear. By means of positional cloning, we reveal that the zebrafish mutant tennismatch is a hypomorphic allele of Med10, a conserved MED middle domain subunit. Using morpholino antisense oligonucleotides, we further demonstrate that reduction of Med10 levels led to an enhancement of the Wnt signaling pathway, while also suggesting a role for Med10 in mediating the Nodal signaling pathway. In contrast to the dual roles of Med10, reduction of Med12 and Med13 levels, two MED subunits in the regulatory domain, led to an enhancement of the Wnt signaling pathway but not the Nodal pathway, while reduction of Med15 levels, a MED subunit in the tail domain, suppressed the Nodal signaling pathway but not the Wnt signaling pathway. Thus, Med10 appears to be a unique MED subunit that differentially transduces information from distinct signaling pathways during zebrafish embryogenesis.


Assuntos
Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/deficiência , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , Dados de Sequência Molecular , Mutação , Proteína Nodal , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA