Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
J Comput Chem ; 45(18): 1540-1551, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38490813

RESUMO

An auxiliary polarization formulation of the fragment molecular orbital (FMO) method is developed, combining a basis set correction computed for capped isolated fragments with a polarization obtained from uncapped fragments. For a set of organic and inorganic test systems, it is shown that the total energy and atomic charges are accurately reproduced with respect to full unfragmented calculations. It is demonstrated that the method is accurate for computing electronic excited states. The developed approach is applied to rank the isomers of chignolin from experimental NMR data (PDB: 1UAO) according to their relative energy. Contributions of polarization and basis set effects to pair interactions between fragments are elucidated.

2.
Chemphyschem ; 25(14): e202400170, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749916

RESUMO

The enhancement of the peptide bond order by a resonance in the lone pair of N and the π-bond of CO is analyzed. A decomposition of the bond order in terms of localized molecular orbitals is developed and applied to the peptide bond. A combination of two rotations of hybrid orbitals is proposed to improve the boundary treatment in the fragment molecular orbital method. The developed approach is applied to peptide bonds, and it is found crucial to retain the π orbital in the variational space of both fragments across the boundary. The interaction energies between conventional amino acid residues in Trp-cage (1L2Y) are discussed.

3.
Phys Chem Chem Phys ; 26(27): 18614-18628, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38919134

RESUMO

A partition analysis based on segments is developed for density functional theory defining solute dipole moments of functional groups, and the corresponding induced solvent dipoles representing solvent screening. The accuracy of dipoles from the fragment molecular orbital method is evaluated in comparison to unfragmented values. The analysis is applied to evaluate dipole moments of side chains, amino and carbonyl groups in common polypeptide motifs, α-helixes, ß-turns, and random coils in solution. The membrane domain of the ATP synthase (1B9U) is analyzed, revealing the effect of the bend splitting of the α-helix into two pieces.


Assuntos
Peptídeos , Peptídeos/química , Teoria da Densidade Funcional , Soluções , Solventes/química , Motivos de Aminoácidos , Modelos Moleculares
4.
J Phys Chem A ; 128(6): 1154-1162, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38302431

RESUMO

An excitonic coupling model is developed based on an equation-of-motion coupled cluster combined with the fragment molecular orbital method. The effects of polarization and excitonic coupling on the splitting of quasi-degenerate levels in systems containing multiple chromophores are elucidated on dimers of formaldehyde, water, formic acid, hydrogen fluoride, and carbon monoxide. It is shown that the level structure is mainly determined by the mutual polarization of chromophores and to a lesser extent by the excitonic coupling. The role of symmetry in excitonic coupling in dimers is discussed. The excitonic coupling between all residues in the photoactive yellow protein (PDB: 2PHY) is analyzed.

5.
J Phys Chem A ; 127(44): 9357-9364, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37782030

RESUMO

A many-body expansion of ionization potentials and electron affinities is developed based on a combination of the fragment molecular orbital method and equation-of-motion coupled-cluster (EOM-CC). In addition to site-specific values, obtained as one-body properties, pair and triple corrections are added to account for nonlocal EOM-CC contributions of the molecular environment of a chromophore. The developed method is applied to carboxylic acids, alkyl cations, a protein ubiquitin (Protein Data Bank ID 1UBQ), and a nano ribbon of white graphene elucidating the effect of environment on ionization potential and electron affinity.

6.
J Chem Phys ; 158(16)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37098765

RESUMO

Strategies for multiple-level parallelizations of quantum-mechanical calculations are discussed, with an emphasis on using groups of workers for performing parallel tasks. These parallel programming models can be used for a variety ab initio quantum chemistry approaches, including the fragment molecular orbital method and replica-exchange molecular dynamics. Strategies for efficient load balancing on problems of increasing granularity are introduced and discussed. A four-level parallelization is developed based on a multi-level hierarchical grouping, and a high parallel efficiency is achieved on the Theta supercomputer using 131 072 OpenMP threads.

7.
J Comput Chem ; 43(16): 1094-1103, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35446441

RESUMO

Using isolated and polarized states of fragments, a method for computing the polarization energies in density functional theory (DFT) and density-functional tight-binding (DFTB) is developed in the framework of the fragment molecular orbital method. For DFTB, the method is extended into the use of periodic boundary conditions (PBC), for which a new component, a periodic self-polarization energy, is derived. The couplings of the polarization to other components in the pair interaction energy analysis (PIEDA) are derived for DFT and DFTB, and compared to Hartree-Fock and second-order Møller-Plesset perturbation theory (MP2). The effect of the self-consistent (DFT) and perturbative (MP2) treatment of the electron correlation on the polarization is discussed. The difference in the polarization in the bulk (PBC) and micro (cluster) solvation is elucidated.

8.
Chemistry ; 28(12): e202104481, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35025110

RESUMO

Aptamer selection against novel infections is a complicated and time-consuming approach. Synergy can be achieved by using computational methods together with experimental procedures. This study aims to develop a reliable methodology for a rational aptamer in silico et vitro design. The new approach combines multiple steps: (1) Molecular design, based on screening in a DNA aptamer library and directed mutagenesis to fit the protein tertiary structure; (2) 3D molecular modeling of the target; (3) Molecular docking of an aptamer with the protein; (4) Molecular dynamics (MD) simulations of the complexes; (5) Quantum-mechanical (QM) evaluation of the interactions between aptamer and target with further analysis; (6) Experimental verification at each cycle for structure and binding affinity by using small-angle X-ray scattering, cytometry, and fluorescence polarization. By using a new iterative design procedure, structure- and interaction-based drug design (SIBDD), a highly specific aptamer to the receptor-binding domain of the SARS-CoV-2 spike protein, was developed and validated. The SIBDD approach enhances speed of the high-affinity aptamers development from scratch, using a target protein structure. The method could be used to improve existing aptamers for stronger binding. This approach brings to an advanced level the development of novel affinity probes, functional nucleic acids. It offers a blueprint for the straightforward design of targeting molecules for new pathogen agents and emerging variants.


Assuntos
Aptâmeros de Nucleotídeos , COVID-19 , Aptâmeros de Nucleotídeos/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2 , Técnica de Seleção de Aptâmeros , Glicoproteína da Espícula de Coronavírus
9.
J Chem Inf Model ; 62(16): 3784-3799, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35939049

RESUMO

Protein-protein interactions (PPIs) are essential for the function of many proteins. Aberrant PPIs have the potential to lead to disease, making PPIs promising targets for drug discovery. There are over 64,000 PPIs in the human interactome reference database; however, to date, very few PPI modulators have been approved for clinical use. Further development of PPI-specific therapeutics is highly dependent on the availability of structural data and the existence of reliable computational tools to explore the interface between two interacting proteins. The fragment molecular orbital (FMO) quantum mechanics method offers comprehensive and computationally inexpensive means of identifying the strength (in kcal/mol) and the chemical nature (electrostatic or hydrophobic) of the molecular interactions taking place at the protein-protein interface. We have integrated FMO and PPI exploration (FMO-PPI) to identify the residues that are critical for protein-protein binding (hotspots). To validate this approach, we have applied FMO-PPI to a dataset of protein-protein complexes representing several different protein subfamilies and obtained FMO-PPI results that are in agreement with published mutagenesis data. We observed that critical PPIs can be divided into three major categories: interactions between residues of two proteins (intermolecular), interactions between residues within the same protein (intramolecular), and interactions between residues of two proteins that are mediated by water molecules (water bridges). We extended our findings by demonstrating how this information obtained by FMO-PPI can be utilized to support the structure-based drug design of PPI modulators (SBDD-PPI).


Assuntos
Desenho de Fármacos , Proteínas , Descoberta de Drogas/métodos , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Água
10.
Phys Chem Chem Phys ; 24(13): 7739-7747, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35293902

RESUMO

Adsorption and chemical reactions occurring on industrially important ZSM-5 and faujasite zeolite catalysts are investigated with the quantum-mechanical fragment molecular orbital method combined with periodic boundary conditions. Suitable fragmentation patterns are devised and tested providing important case studies of computing real materials with fragmentation methods. A good accuracy is demonstrated in comparison to full calculations, and a good agreement with the available experimental data is obtained. The full production cycle of p-xylene on faujasite zeolite is mapped. The catalytic role of the zeolite in the dehydration reaction, analyzed with the partition analysis, is attributed to the delocalization of the negative charge over the zeolite. On the other hand, an increase of the barrier in the Diels-Alder reaction by the zeolite is attributed to the preferential stabilization of the reactants over the transition state as demonstrated by the guest-zeolite interaction energy.

11.
Phys Chem Chem Phys ; 24(8): 5014-5038, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35142765

RESUMO

A structure-based quantitative calculation of excitonic couplings between photosynthetic pigments has to describe the dynamical polarization of the protein/solvent environment of the pigments, giving rise to reaction field and screening effects. Here, this challenging problem is approached by combining the fragment molecular orbital (FMO) method with the polarizable continuum model (PCM). The method is applied to compute excitonic couplings between chlorophyll a (Chl a) pigments of the water-soluble chlorophyll-binding protein (WSCP). By calibrating the vacuum dipole strength of the 0-0 transition of the Chl a chromophores according to experimental data, an excellent agreement between calculated and experimental linear absorption and circular dichroism spectra of WSCP is obtained. The effect of the mutual polarization of the pigment ground states is calculated to be very small. The simple Poisson-Transition-charge-from-Electrostatic-potential (Poisson-TrEsp) method is found to accurately describe the screening part of the excitonic coupling, obtained with FMO/PCM. Taking into account that the reaction field effects of the latter method can be described by a scalar constant leads to an improvement of Poisson-TrEsp that is expected to provide the basis for simple and realistic calculations of optical spectra and energy transfer in photosynthetic light-harvesting complexes. In addition, we present an expression for the estimation of Huang-Rhys factors of high-frequency pigment vibrations from experimental fluorescence line-narrowing spectra that takes into account the redistribution of oscillator strength by the interpigment excitonic coupling. Application to WSCP results in corrected Huang-Rhys factors that are less than one third of the original values obtained by the standard electronic two-state analysis that neglects the above redistribution. These factors are important for the estimation of the dipole strength of the 0-0 transition of the chromophores and for the development of calculation schemes for the spectral density of the exciton-vibrational coupling.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Clorofila/química , Clorofila A/química , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo
12.
J Phys Chem A ; 126(6): 957-969, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35080391

RESUMO

For gaining insights into interactions in periodic systems, an analysis is developed based on the fragment molecular orbital method combined with periodic boundary conditions. The adsorption energy is decomposed into guest and surface polarization and deformation energy, guest-surface and guest-guest interactions, and the vibrational free energy. The analysis is applied to the adsorption of guest molecules to Ih (001) ice surface. The cooperativity effects result in a non-linear change in the adsorption energy with coverage due to many-body effects. The role of dispersion is found to be dominant for guests with long hydrophobic tails. A rule is proposed relating the length of the alkyl tail with the formation of the guest layer. The computed binding enthalpies are in good agreement with experimental values. For high coverage, adsorbed molecules can form an ordered layer known as self-assembled monolayer.

13.
J Chem Phys ; 157(23): 231001, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36550057

RESUMO

Fast parameterized methods such as density-functional tight-binding (DFTB) facilitate realistic calculations of large molecular systems, which can be accelerated by the fragment molecular orbital (FMO) method. Fragmentation facilitates interaction analyses between functional parts of molecular systems. In addition to DFTB, other parameterized methods combined with FMO are also described. Applications of FMO methods to biochemical and inorganic systems are reviewed.


Assuntos
Teoria Quântica
14.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362296

RESUMO

Quantum mechanical (QM) calculations at the level of density-functional tight-binding are applied to a protein-DNA complex (PDB: 2o8b) consisting of 3763 atoms, averaging 100 snapshots from molecular dynamics simulations. A detailed comparison of QM and force field (Amber) results is presented. It is shown that, when solvent screening is taken into account, the contributions of the backbones are small, and the binding of nucleotides in the double helix is governed by the base-base interactions. On the other hand, the backbones can make a substantial contribution to the binding of amino acid residues to nucleotides and other residues. The effect of charge transfer on the interactions is also analyzed, revealing that the actual charge of nucleotides and amino acid residues can differ by as much as 6 and 8% from the formal integer charge, respectively. The effect of interactions on topological models (protein -residue networks) is elucidated.


Assuntos
Aminoácidos , Teoria Quântica , Aminoácidos/química , Solventes , Nucleotídeos , Proteínas/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-33834429

RESUMO

Active hydromedusan and ctenophore Ca2+-regulated photoproteins form complexes consisting of apoprotein and strongly non-covalently bound 2-hydroperoxycoelenterazine (an oxygenated intermediate of coelenterazine). Whereas the absorption maximum of hydromedusan photoproteins is at 460-470 nm, ctenophore photoproteins absorb at 437 nm. Finding out a physical reason for this blue shift is the main objective of this work, and, to achieve it, the whole structure of the protein-substrate complex was optimized using a linear scaling quantum-mechanical method. Electronic excitations pertinent to the spectra of the 2-hydroperoxy adduct of coelenterazine were simulated with time-dependent density functional theory. The dihedral angle of 60° of the 6-(p-hydroxy)-phenyl group relative to the imidazopyrazinone core of 2-hydroperoxycoelenterazine molecule was found to be the key factor determining the absorption of ctenophore photoproteins at 437 nm. The residues relevant to binding of the substrate and its adopting the particular rotation were also identified.

16.
J Chem Phys ; 154(11): 111102, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33752370

RESUMO

The density-functional tight-binding (DFTB) formulation of the fragment molecular orbital method is combined with periodic boundary conditions. Long-range electrostatics and dispersion are evaluated with the Ewald summation technique. The first analytic derivatives of the energy with respect to atomic coordinates and lattice parameters are formulated. The accuracy of the method is established in comparison to numerical gradients and DFTB without fragmentation. The largest elementary cell in this work has 1631 atoms. The method is applied to elucidate the polarization, charge transfer, and interactions in the solution.

17.
J Phys Chem A ; 124(49): 10346-10358, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33179919

RESUMO

High-order charge transfer is incorporated into the fragment molecular orbital (FMO) method using a charge transfer state with fractional charges. This state is used for a partition analysis of properties based on segments that may be different from fragments in FMO. The partition analysis is also formulated for calculations without fragmentation. All development in this work is limited to density-functional tight-binding. The analysis is applied to a water cluster, crambin (PDB: 1CBN), and two complexes of Trp-cage (1L2Y) with ligands. The contributions of functional groups in ligands are obtained, providing useful information for drug discovery.

18.
J Phys Chem A ; 124(24): 4956-4971, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32447956

RESUMO

An energy decomposition analysis is developed for the three-body expansion of the fragment molecular orbital method at the level of density functional theory, density-functional tight-binding, coupled cluster, and other quantum-mechanical approaches in vacuum and solution. It is shown that the addition of three-body terms improves the accuracy of the components and the total energies. For a compact representation, three-body corrections can be incorporated into two-body interactions to reduce the complexity of the analysis. The method is applied to solvated alkali and halide ions, a nanocrystal of ice, and a Trp-cage protein (PDB: 1L2Y)-ligand complex.

19.
J Chem Phys ; 152(15): 154102, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32321259

RESUMO

A discussion of many of the recently implemented features of GAMESS (General Atomic and Molecular Electronic Structure System) and LibCChem (the C++ CPU/GPU library associated with GAMESS) is presented. These features include fragmentation methods such as the fragment molecular orbital, effective fragment potential and effective fragment molecular orbital methods, hybrid MPI/OpenMP approaches to Hartree-Fock, and resolution of the identity second order perturbation theory. Many new coupled cluster theory methods have been implemented in GAMESS, as have multiple levels of density functional/tight binding theory. The role of accelerators, especially graphical processing units, is discussed in the context of the new features of LibCChem, as it is the associated problem of power consumption as the power of computers increases dramatically. The process by which a complex program suite such as GAMESS is maintained and developed is considered. Future developments are briefly summarized.

20.
J Comput Chem ; 40(2): 297-309, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30368851

RESUMO

The alanine dipeptide is a standard system to model dihedral angles in proteins. It is shown that obtaining the Ramachandran plot accurately is a hard problem because of many local minima; depending on the details of geometry optimizations, different Ramachandran plots can be obtained. To locate all energy minima, starting from geometries from MD simulations, 250,000 geometry optimizations were performed at the level of RHF/6-31G*, followed by re-optimizations of the located 827 minima at the level of MP2/6-311++G**, yielding 30 unique minima, most of which were not previously reported in literature. Both in vacuo and solvated structures are discussed. The minima are systematically categorized based on four backbone dihedral angles. The Gibbs energies are evaluated and the structural factors determining the relative stabilities of conformers are discussed. © 2018 Wiley Periodicals, Inc.


Assuntos
Alanina/química , Teoria da Densidade Funcional , Dipeptídeos/química , Simulação de Dinâmica Molecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA