Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Annu Rev Pharmacol Toxicol ; 61: 757-778, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33017571

RESUMO

The spontaneous activity of the sinoatrial node initiates the heartbeat. Sino-atrial node dysfunction (SND) and sick sinoatrial (sick sinus) syndrome are caused by the heart's inability to generate a normal sinoatrial node action potential. In clinical practice, SND is generally considered an age-related pathology, secondary to degenerative fibrosis of the heart pacemaker tissue. However, other forms of SND exist, including idiopathic primary SND, which is genetic, and forms that are secondary to cardiovascular or systemic disease. The incidence of SND in the general population is expected to increase over the next half century, boosting the need to implant electronic pacemakers. During the last two decades, our knowledge of sino-atrial node physiology and of the pathophysiological mechanisms underlying SND has advanced considerably. This review summarizes the current knowledge about SND mechanisms and discusses the possibility of introducing new pharmacologic therapies for treating SND.


Assuntos
Síndrome do Nó Sinusal , Nó Sinoatrial , Sistema de Condução Cardíaco , Humanos
2.
PLoS Comput Biol ; 19(12): e1011708, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38109436

RESUMO

The sinoatrial node (SAN), the primary pacemaker of the heart, is responsible for the initiation and robust regulation of sinus rhythm. 3D mapping studies of the ex-vivo human heart suggested that the robust regulation of sinus rhythm relies on specialized fibrotically-insulated pacemaker compartments (head, center and tail) with heterogeneous expressions of key ion channels and receptors. They also revealed up to five sinoatrial conduction pathways (SACPs), which electrically connect the SAN with neighboring right atrium (RA). To elucidate the role of these structural-molecular factors in the functional robustness of human SAN, we developed comprehensive biophysical computer models of the SAN based on 3D structural, functional and molecular mapping of ex-vivo human hearts. Our key finding is that the electrical insulation of the SAN except SACPs, the heterogeneous expression of If, INa currents and adenosine A1 receptors (A1R) across SAN pacemaker-conduction compartments are required to experimentally reproduce observed SAN activation patterns and important phenomena such as shifts of the leading pacemaker and preferential SACP. In particular, we found that the insulating border between the SAN and RA, is required for robust SAN function and protection from SAN arrest during adenosine challenge. The heterogeneity in the expression of A1R within the human SAN compartments underlies the direction of pacemaker shift and preferential SACPs in the presence of adenosine. Alterations of INa current and fibrotic remodelling in SACPs can significantly modulate SAN conduction and shift the preferential SACP/exit from SAN. Finally, we show that disease-induced fibrotic remodeling, INa suppression or increased adenosine make the human SAN vulnerable to pacing-induced exit blocks and reentrant arrhythmia. In summary, our computer model recapitulates the structural and functional features of the human SAN and can be a valuable tool for investigating mechanisms of SAN automaticity and conduction as well as SAN arrhythmia mechanisms under different pathophysiological conditions.


Assuntos
Sistema de Condução Cardíaco , Nó Sinoatrial , Humanos , Nó Sinoatrial/fisiologia , Arritmias Cardíacas , Adenosina , Simulação por Computador
3.
Circulation ; 144(2): 126-143, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33874740

RESUMO

BACKGROUND: Up to 50% of the adult human sinoatrial node (SAN) is composed of dense connective tissue. Cardiac diseases including heart failure (HF) may increase fibrosis within the SAN pacemaker complex, leading to impaired automaticity and conduction of electric activity to the atria. Unlike the role of cardiac fibroblasts in pathologic fibrotic remodeling and tissue repair, nothing is known about fibroblasts that maintain the inherently fibrotic SAN environment. METHODS: Intact SAN pacemaker complex was dissected from cardioplegically arrested explanted nonfailing hearts (non-HF; n=22; 48.7±3.1 years of age) and human failing hearts (n=16; 54.9±2.6 years of age). Connective tissue content was quantified from Masson trichrome-stained head-center and center-tail SAN sections. Expression of extracellular matrix proteins, including collagens 1 and 3A1, CILP1 (cartilage intermediate layer protein 1), and POSTN (periostin), and fibroblast and myofibroblast numbers were quantified by in situ and in vitro immunolabeling. Fibroblasts from the central intramural SAN pacemaker compartment (≈10×5×2 mm3) and right atria were isolated, cultured, passaged once, and treated ± transforming growth factor ß1 and subjected to comprehensive high-throughput next-generation sequencing of whole transcriptome, microRNA, and proteomic analyses. RESULTS: Intranodal fibrotic content was significantly higher in SAN pacemaker complex from HF versus non-HF hearts (57.7±2.6% versus 44.0±1.2%; P<0.0001). Proliferating phosphorylated histone 3+/vimentin+/CD31- (cluster of differentiation 31) fibroblasts were higher in HF SAN. Vimentin+/α-smooth muscle actin+/CD31- myofibroblasts along with increased interstitial POSTN expression were found only in HF SAN. RNA sequencing and proteomic analyses identified unique differences in mRNA, long noncoding RNA, microRNA, and proteomic profiles between non-HF and HF SAN and right atria fibroblasts and transforming growth factor ß1-induced myofibroblasts. Specifically, proteins and signaling pathways associated with extracellular matrix flexibility, stiffness, focal adhesion, and metabolism were altered in HF SAN fibroblasts compared with non-HF SAN. CONCLUSIONS: This study revealed increased SAN-specific fibrosis with presence of myofibroblasts, CILP1, and POSTN-positive interstitial fibrosis only in HF versus non-HF human hearts. Comprehensive proteotranscriptomic profiles of SAN fibroblasts identified upregulation of genes and proteins promoting stiffer SAN extracellular matrix in HF hearts. Fibroblast-specific profiles generated by our proteotranscriptomic analyses of the human SAN provide a comprehensive framework for future studies to investigate the role of SAN-specific fibrosis in cardiac rhythm regulation and arrhythmias.


Assuntos
Fibroblastos/metabolismo , Insuficiência Cardíaca/fisiopatologia , Nó Sinoatrial/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
J Mol Cell Cardiol ; 151: 56-71, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33130148

RESUMO

Atrial fibrillation (AF) occurrence and maintenance is associated with progressive remodeling of electrophysiological (repolarization and conduction) and 3D structural (fibrosis, fiber orientations, and wall thickness) features of the human atria. Significant diversity in AF etiology leads to heterogeneous arrhythmogenic electrophysiological and structural substrates within the 3D structure of the human atria. Since current clinical methods have yet to fully resolve the patient-specific arrhythmogenic substrates, mechanism-based AF treatments remain underdeveloped. Here, we review current knowledge from in-vivo, ex-vivo, and in-vitro human heart studies, and discuss how these studies may provide new insights on the synergy of atrial electrophysiological and 3D structural features in AF maintenance. In-vitro studies on surgically acquired human atrial samples provide a great opportunity to study a wide spectrum of AF pathology, including functional changes in single-cell action potentials, ion channels, and gene/protein expression. However, limited size of the samples prevents evaluation of heterogeneous AF substrates and reentrant mechanisms. In contrast, coronary-perfused ex-vivo human hearts can be studied with state-of-the-art functional and structural technologies, such as high-resolution near-infrared optical mapping and contrast-enhanced MRI. These imaging modalities can resolve atrial arrhythmogenic substrates and their role in reentrant mechanisms maintaining AF and validate clinical approaches. Nonetheless, longitudinal studies are not feasible in explanted human hearts. As no approach is perfect, we suggest that combining the strengths of direct human atrial studies with high fidelity approaches available in the laboratory and in realistic patient-specific computer models would elucidate deeper knowledge of AF mechanisms. We propose that a comprehensive translational pipeline from ex-vivo human heart studies to longitudinal clinically relevant AF animal studies and finally to clinical trials is necessary to identify patient-specific arrhythmogenic substrates and develop novel AF treatments.


Assuntos
Fibrilação Atrial/fisiopatologia , Fenômenos Eletrofisiológicos , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Imageamento Tridimensional , Miocárdio/patologia , Inteligência Artificial , Humanos
5.
PLoS Comput Biol ; 16(2): e1007678, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32097431

RESUMO

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and is a major cause of stroke and morbidity. Recent genome-wide association studies have shown that paired-like homeodomain transcription factor 2 (Pitx2) to be strongly associated with AF. However, the mechanisms underlying Pitx2 modulated arrhythmogenesis and variable effectiveness of antiarrhythmic drugs (AADs) in patients in the presence or absence of impaired Pitx2 expression remain unclear. We have developed multi-scale computer models, ranging from a single cell to tissue level, to mimic control and Pitx2-knockout atria by incorporating recent experimental data on Pitx2-induced electrical and structural remodeling in humans, as well as the effects of AADs. The key findings of this study are twofold. We have demonstrated that shortened action potential duration, slow conduction and triggered activity occur due to electrical and structural remodelling under Pitx2 deficiency conditions. Notably, the elevated function of calcium transport ATPase increases sarcoplasmic reticulum Ca2+ concentration, thereby enhancing susceptibility to triggered activity. Furthermore, heterogeneity is further elevated due to Pitx2 deficiency: 1) Electrical heterogeneity between left and right atria increases; and 2) Increased fibrosis and decreased cell-cell coupling due to structural remodelling slow electrical propagation and provide obstacles to attract re-entry, facilitating the initiation of re-entrant circuits. Secondly, our study suggests that flecainide has antiarrhythmic effects on AF due to impaired Pitx2 by preventing spontaneous calcium release and increasing wavelength. Furthermore, our study suggests that Na+ channel effects alone are insufficient to explain the efficacy of flecainide. Our study may provide the mechanisms underlying Pitx2-induced AF and possible explanation behind the AAD effects of flecainide in patients with Pitx2 deficiency.


Assuntos
Fibrilação Atrial/metabolismo , Simulação por Computador , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Potenciais de Ação , Animais , Antiarrítmicos/farmacologia , Fibrilação Atrial/genética , Remodelamento Atrial , Cálcio/metabolismo , Eletrofisiologia , Retículo Endoplasmático/metabolismo , Fibrose , Flecainida/farmacologia , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Átrios do Coração/fisiopatologia , Proteínas de Homeodomínio/genética , Humanos , Cinética , Camundongos , Camundongos Knockout , Fenótipo , Canal de Liberação de Cálcio do Receptor de Rianodina/farmacologia , Retículo Sarcoplasmático/metabolismo , Sódio/metabolismo , Fatores de Transcrição/genética , Proteína Homeobox PITX2
6.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190557, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32448059

RESUMO

Delayed afterdepolarizations (DADs) and spontaneous depolarizations (SDs) are typically triggered by spontaneous diastolic Ca2+ release from the sarcoplasmic reticulum (SR) which is caused by an elevated SR Ca2+-ATPase (SERCA) uptake and dysfunctional ryanodine receptors. However, recent studies on the T-box transcription factor gene (TBX5) demonstrated that abnormal depolarizations could occur despite a reduced SERCA uptake. Similar findings have also been reported in experimental or clinical studies of diabetes and heart failure. To investigate the sensitivity of SERCA in the genesis of DADs/SDs as well as its dependence on other Ca2+ handling channels, we performed systematic analyses using the Maleckar et al. model. Results showed that the modulation of SERCA alone cannot trigger abnormal depolarizations, but can instead affect the interdependency of other Ca2+ handling channels in triggering DADs/SDs. Furthermore, we discovered the existence of a threshold value for the intracellular concentration of Ca2+ ([Ca2+]i) for abnormal depolarizations, which is modulated by the maximum SERCA uptake and the concentration of Ca2+ in the uptake and release compartments in the SR ([Ca2+]up and [Ca2+]rel). For the first time, our modelling study reconciles different mechanisms of abnormal depolarizations in the setting of 'lone' AF, reduced TBX5, diabetes and heart failure, and may lead to more targeted treatment for these patients. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.


Assuntos
Potenciais de Ação , Cálcio/metabolismo , Átrios do Coração/citologia , Modelos Cardiovasculares , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Estudos de Coortes , Humanos , Transporte Proteico
7.
J Mol Cell Cardiol ; 114: 116-123, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141185

RESUMO

Cross-bridge attachment allows force generation to occur, and rate of tension redevelopment (ktr) is a commonly used index of cross-bridge cycling rate. Tension overshoots have been observed briefly after a slack-restretch ktr maneuver in various species of animal models and humans. In this study, we set out to determine the properties of these overshoots and their possible underlying mechanism. Utilizing human cardiac trabeculae, we have found that tension overshoots are temperature-dependent and that they do not occur at resting states. In addition, we have found that myosin cross-bridge cycle is vital to these overshoots as inhibition of the cycle results in the blunting of the overshoots and the magnitude of the overshoots are dependent on the level of myofilament activation. Lastly, we show that the number of cross-bridges transiently increase during tension overshoots. These findings lead us to conclude that tension overshoots are likely due to a transient enhancement of the recruitment of myosin heads into the cross-bridge cycling, regulated by the myocardium, and with potential physiological significance in determining cardiac output. NEWS AND NOTEWORTHY: We show that isolated human myocardium is capable of transiently increasing its maximal force generation capability by increasing cross-bridge recruitment following slack-restretch maneuver. This process can potentially have important implications and significance in cardiac contraction in vivo.


Assuntos
Miocárdio/metabolismo , Idoso , Fenômenos Biomecânicos , Feminino , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Temperatura
8.
J Mol Cell Cardiol ; 121: 81-93, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29981798

RESUMO

BACKGROUND: In patients with end-stage heart failure, the primary etiology often originates in the left ventricle, and eventually the contractile function of the right ventricle (RV) also becomes compromised. RV tissue-level deficits in contractile force and/or kinetics need quantification to understand involvement in ischemic and non-ischemic failing human myocardium. METHODS AND RESULTS: The human population suffering from heart failure is diverse, requiring many subjects to be studied in order to perform an adequately powered statistical analysis. From 2009-present we assessed live tissue-level contractile force and kinetics in isolated myocardial RV trabeculae from 44 non-failing and 41 failing human hearts. At 1 Hz stimulation rate (in vivo resting state) the developed active force was not different in non-failing compared to failing ischemic nor non-ischemic failing trabeculae. In sharp contrast, the kinetics of relaxation were significantly impacted by disease, with 50% relaxation time being significantly shorter in non-failing vs. non-ischemic failing, while the latter was still significantly shorter than ischemic failing. Gender did not significantly impact kinetics. Length-dependent activation was not impacted. Although baseline force was not impacted, contractile reserve was critically blunted. The force-frequency relation was positive in non-failing myocardium, but negative in both ischemic and non-ischemic myocardium, while the ß-adrenergic response to isoproterenol was depressed in both pathologies. CONCLUSIONS: Force development at resting heart rate is not impacted by cardiac pathology, but kinetics are impaired and the magnitude of the impairment depends on the underlying etiology. Focusing on restoration of myocardial kinetics will likely have greater therapeutic potential than targeting force of contraction.


Assuntos
Insuficiência Cardíaca/terapia , Ventrículos do Coração/fisiopatologia , Coração/fisiopatologia , Miocárdio/patologia , Adulto , Idoso , Animais , Feminino , Insuficiência Cardíaca/fisiopatologia , Transplante de Coração , Humanos , Masculino , Pessoa de Meia-Idade , Contração Miocárdica/fisiologia , Terapia de Relaxamento , Doadores de Tecidos
9.
Proc Natl Acad Sci U S A ; 112(40): 12528-33, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392562

RESUMO

Nav channels are essential for metazoan membrane depolarization, and Nav channel dysfunction is directly linked with epilepsy, ataxia, pain, arrhythmia, myotonia, and irritable bowel syndrome. Human Nav channelopathies are primarily caused by variants that directly affect Nav channel permeability or gating. However, a new class of human Nav channelopathies has emerged based on channel variants that alter regulation by intracellular signaling or cytoskeletal proteins. Fibroblast growth factor homologous factors (FHFs) are a family of intracellular signaling proteins linked with Nav channel regulation in neurons and myocytes. However, to date, there is surprisingly little evidence linking Nav channel gene variants with FHFs and human disease. Here, we provide, to our knowledge, the first evidence that mutations in SCN5A (encodes primary cardiac Nav channel Nav1.5) that alter FHF binding result in human cardiovascular disease. We describe a five*generation kindred with a history of atrial and ventricular arrhythmias, cardiac arrest, and sudden cardiac death. Affected family members harbor a novel SCN5A variant resulting in p.H1849R. p.H1849R is localized in the central binding core on Nav1.5 for FHFs. Consistent with these data, Nav1.5 p.H1849R affected interaction with FHFs. Further, electrophysiological analysis identified Nav1.5 p.H1849R as a gain-of-function for INa by altering steady-state inactivation and slowing the rate of Nav1.5 inactivation. In line with these data and consistent with human cardiac phenotypes, myocytes expressing Nav1.5 p.H1849R displayed prolonged action potential duration and arrhythmogenic afterdepolarizations. Together, these findings identify a previously unexplored mechanism for human Nav channelopathy based on altered Nav1.5 association with FHF proteins.


Assuntos
Arritmias Cardíacas/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Células Cultivadas , Canalopatias/genética , Canalopatias/metabolismo , Canalopatias/fisiopatologia , Saúde da Família , Feminino , Predisposição Genética para Doença/genética , Células HEK293 , Humanos , Immunoblotting , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Patch-Clamp , Linhagem , Ligação Proteica
10.
Circulation ; 134(6): 486-98, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27462069

RESUMO

BACKGROUND: Adenosine provokes atrial fibrillation (AF) with a higher activation frequency in right atria (RA) versus left atria (LA) in patients, but the underlying molecular and functional substrates are unclear. We tested the hypothesis that adenosine-induced AF is driven by localized reentry in RA areas with highest expression of adenosine A1 receptor and its downstream GIRK (G protein-coupled inwardly rectifying potassium channels) channels (IK,Ado). METHODS: We applied biatrial optical mapping and immunoblot mapping of various atrial regions to reveal the mechanism of adenosine-induced AF in explanted failing and nonfailing human hearts (n=37). RESULTS: Optical mapping of coronary-perfused atria (n=24) revealed that adenosine perfusion (10-100 µmol/L) produced more significant shortening of action potential durations in RA (from 290±45 to 239±41 ms, 17.3±10.4%; P<0.01) than LA (from 307±24 to 286±23 ms, 6.7±6.6%; P<0.01). In 10 hearts, adenosine induced AF (317±116 s) that, when sustained (≥2 minutes), was primarily maintained by 1 to 2 localized reentrant drivers in lateral RA. Tertiapin (10-100 nmol/L), a selective GIRK channel blocker, counteracted adenosine-induced action potential duration shortening and prevented AF induction. Immunoblotting showed that the superior/middle lateral RA had significantly higher adenosine A1 receptor (2.7±1.7-fold; P<0.01) and GIRK4 (1.7±0.8-fold; P<0.05) protein expression than lateral/posterior LA. CONCLUSIONS: This study revealed a 3-fold RA-to-LA adenosine A1 receptor protein expression gradient in the human heart, leading to significantly greater RA versus LA repolarization sensitivity in response to adenosine. Sustained adenosine-induced AF is maintained by reentrant drivers localized in lateral RA regions with the highest adenosine A1 receptor/GIRK4 expression. Selective atrial GIRK channel blockade may effectively treat AF during conditions with increased endogenous adenosine.


Assuntos
Adenosina/toxicidade , Fibrilação Atrial/induzido quimicamente , Fibrilação Atrial/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/biossíntese , Átrios do Coração/metabolismo , Receptor A1 de Adenosina/biossíntese , Adulto , Idoso , Feminino , Regulação da Expressão Gênica , Coração/diagnóstico por imagem , Coração/efeitos dos fármacos , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/efeitos dos fármacos , Sistema de Condução Cardíaco/diagnóstico por imagem , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
11.
J Cardiovasc Electrophysiol ; 28(8): 933-943, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28471545

RESUMO

BACKGROUND: Pacemakers (PM) are used for managing sick sinus syndrome (SSS). This study evaluates predictors and trends of PM implantation for SSS. METHODS: Patients were identified from the National Inpatient Sample dataset (2003-2013). Included patients were ≥18 years old, had a diagnosis of sinus node dysfunction and atrial arrhythmia (i.e., SSS). Patients who died, transferred out, who had prior device, or had a defibrillator or resynchronization therapy device implanted were excluded. Included patients were then stratified by if a PM was implanted. Data regarding SSS, trends of PM utilization, and multivariable models of factors associated with PM implantation are presented. RESULTS: Note that 328,670 patients satisfied study criteria. This study compared patients who underwent (87.4%) PM implantation to those who did not undergo (12.6%) PM implantation. The annual trends for hospitalization with SSS and PM placement have been decreasing (P <0.001). Variables associated with lower likelihood for PM implantation include young age, female sex, non-Caucasian race, chronic heart failure, Charlson Comorbidity Score ≥1, emergency room and weekend admission, hospital stay ≤3 days, and high cardiology inpatient volume. Greater likelihood for PM implantation was associated with hyperlipidemia, hypertension, and hospitals that were either private, large, Northeastern location, or with high cardiac procedural volume. CONCLUSIONS: Analyzing 11-year data from a national inpatient database demonstrate a number of relevant variables that impact PM utilization that include not only clinical but also nonclinical variables such as socioeconomic status, gender, and hospital features. Racial and gender bias toward PM implantation are unchanged and persist through 2013.


Assuntos
Bases de Dados Factuais/tendências , Marca-Passo Artificial/tendências , Síndrome do Nó Sinusal/diagnóstico , Síndrome do Nó Sinusal/terapia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Desfibriladores Implantáveis/tendências , Feminino , Hospitalização/tendências , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Síndrome do Nó Sinusal/epidemiologia , Fatores de Tempo , Adulto Jovem
12.
Arch Biochem Biophys ; 601: 48-55, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26854725

RESUMO

Cross-bridge cycling kinetics play an essential role in the heart's ability to contract and relax. The rate of tension redevelopment (ktr) slows down as a muscle length is increased in intact human myocardium. We set out to determine the effect of rapid length step changes and protein kinase A (PKA) and protein kinase C-ßII (PKC-ßII) inhibitors on the ktr in ultra-thin non-failing and failing human right ventricular trabeculae. After stabilizing the muscle either at L90 (90% of optimal length) or at Lopt (optimal length), we rapidly changed the length to either Lopt or L90 and measured ktr. We report that length-dependent changes in ktr occur very rapidly (in the order of seconds or faster) in both non-failing and failing muscles and that the length at which a muscle had been stabilized prior to the length change does not significantly affect ktr. In addition, at L90 and at Lopt, PKA and PKC-ßII inhibitors did not significantly change ktr. Our results reveal that length-dependent regulation of cross-bridge cycling kinetics predominantly occurs rapidly and involves the intrinsic properties of the myofilament rather than post-translational modifications that are known to occur in the cardiac muscle as a result of a change in muscle/sarcomere length.


Assuntos
Coração/fisiologia , Miocárdio/metabolismo , Miofibrilas/fisiologia , Sarcômeros/fisiologia , Adulto , Idoso , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Feminino , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Humanos , Isoquinolinas/química , Cinética , Masculino , Pessoa de Meia-Idade , Contração Miocárdica , Proteína Quinase C beta/antagonistas & inibidores , Transdução de Sinais , Sulfonamidas/química
13.
Proc Natl Acad Sci U S A ; 110(25): 10312-7, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23733959

RESUMO

Dysregulated intracellular Ca(2+) signaling is implicated in a variety of cardiac arrhythmias, including catecholaminergic polymorphic ventricular tachycardia. Spontaneous diastolic Ca(2+) release (DCR) can induce arrhythmogenic plasma membrane depolarizations, although the mechanism responsible for DCR synchronization among adjacent myocytes required for ectopic activity remains unclear. We investigated the synchronization mechanism(s) of DCR underlying untimely action potentials and diastolic contractions (DCs) in a catecholaminergic polymorphic ventricular tachycardia mouse model with a mutation in cardiac calsequestrin. We used a combination of different approaches including single ryanodine receptor channel recording, optical imaging (Ca(2+) and membrane potential), and contractile force measurements in ventricular myocytes and intact cardiac muscles. We demonstrate that DCR occurs in a temporally and spatially uniform manner in both myocytes and intact myocardial tissue isolated from cardiac calsequestrin mutation mice. Such synchronized DCR events give rise to triggered electrical activity that results in synchronous DCs in the myocardium. Importantly, we establish that synchronization of DCR is a result of a combination of abbreviated ryanodine receptor channel refractoriness and the preceding synchronous stimulated Ca(2+) release/reuptake dynamics. Our study reveals how aberrant DCR events can become synchronized in the intact myocardium, leading to triggered activity and the resultant DCs in the settings of a cardiac rhythm disorder.


Assuntos
Sinalização do Cálcio/fisiologia , Calsequestrina/genética , Coração/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/fisiopatologia , Animais , Cálcio/metabolismo , Calsequestrina/fisiologia , Diástole/fisiologia , Modelos Animais de Doenças , Ventrículos do Coração/citologia , Masculino , Camundongos , Camundongos Mutantes , Mutação , Miócitos Cardíacos/fisiologia , Músculos Papilares/citologia , Músculos Papilares/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Retículo Sarcoplasmático/fisiologia , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo
14.
Eur Heart J ; 36(11): 686-97, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24216388

RESUMO

AIMS: Loss-of-function mutations in Calsequestrin 2 (CASQ2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT patients also exhibit bradycardia and atrial arrhythmias for which the underlying mechanism remains unknown. We aimed to study the sinoatrial node (SAN) dysfunction due to loss of CASQ2. METHODS AND RESULTS: In vivo electrocardiogram (ECG) monitoring, in vitro high-resolution optical mapping, confocal imaging of intracellular Ca(2+) cycling, and 3D atrial immunohistology were performed in wild-type (WT) and Casq2 null (Casq2(-/-)) mice. Casq2(-/-) mice exhibited bradycardia, SAN conduction abnormalities, and beat-to-beat heart rate variability due to enhanced atrial ectopic activity both at baseline and with autonomic stimulation. Loss of CASQ2 increased fibrosis within the pacemaker complex, depressed primary SAN activity, and conduction, but enhanced atrial ectopic activity and atrial fibrillation (AF) associated with macro- and micro-reentry during autonomic stimulation. In SAN myocytes, CASQ2 deficiency induced perturbations in intracellular Ca(2+) cycling, including abnormal Ca(2+) release, periods of significantly elevated diastolic Ca(2+) levels leading to pauses and unstable pacemaker rate. Importantly, Ca(2+) cycling dysfunction occurred not only at the SAN cellular level but was also globally manifested as an increased delay between action potential (AP) and Ca(2+) transient upstrokes throughout the atrial pacemaker complex. CONCLUSIONS: Loss of CASQ2 causes abnormal sarcoplasmic reticulum Ca(2+) release and selective interstitial fibrosis in the atrial pacemaker complex, which disrupt SAN pacemaking but enhance latent pacemaker activity, create conduction abnormalities and increase susceptibility to AF. These functional and extensive structural alterations could contribute to SAN dysfunction as well as AF in CPVT patients.


Assuntos
Fibrilação Atrial/genética , Bradicardia/genética , Calsequestrina/genética , Deleção de Genes , Retículo Sarcoplasmático/metabolismo , Nó Sinoatrial/fisiologia , Potenciais de Ação/fisiologia , Animais , Função Atrial/genética , Cálcio/metabolismo , Calsequestrina/deficiência , Cardiomegalia/genética , Fibrose/genética , Técnicas de Inativação de Genes , Camundongos Transgênicos , Nó Sinoatrial/patologia
15.
Eur Heart J ; 36(35): 2390-401, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26059724

RESUMO

AIMS: The complex architecture of the human atria may create physical substrates for sustained re-entry to drive atrial fibrillation (AF). The existence of sustained, anatomically defined AF drivers in humans has been challenged partly due to the lack of simultaneous endocardial-epicardial (Endo-Epi) mapping coupled with high-resolution 3D structural imaging. METHODS AND RESULTS: Coronary-perfused human right atria from explanted diseased hearts (n = 8, 43-72 years old) were optically mapped simultaneously by three high-resolution CMOS cameras (two aligned Endo-Epi views (330 µm2 resolution) and one panoramic view). 3D gadolinium-enhanced magnetic resonance imaging (GE-MRI, 80 µm3 resolution) revealed the atrial wall structure varied in thickness (1.0 ± 0.7-6.8 ± 2.4 mm), transmural fiber angle differences, and interstitial fibrosis causing transmural activation delay from 23 ± 11 to 43 ± 22 ms at increased pacing rates. Sustained AF (>90 min) was induced by burst pacing during pinacidil (30-100 µM) perfusion. Dual-sided sub-Endo-sub-Epi optical mapping revealed that AF was driven by spatially and temporally stable intramural re-entry with 107 ± 50 ms cycle length and transmural activation delay of 67 ± 31 ms. Intramural re-entrant drivers were captured primarily by sub-Endo mapping, while sub-Epi mapping visualized re-entry or 'breakthrough' patterns. Re-entrant drivers were anchored on 3D micro-anatomic tracks (15.4 ± 2.2 × 6.0 ± 2.3 mm2, 2.9 ± 0.9 mm depth) formed by atrial musculature characterized by increased transmural fiber angle differences and interstitial fibrosis. Targeted radiofrequency ablation of the tracks verified these re-entries as drivers of AF. CONCLUSIONS: Integrated 3D structural-functional mapping of diseased human right atria ex vivo revealed that the complex atrial microstructure caused significant differences between Endo vs. Epi activation during pacing and sustained AF driven by intramural re-entry anchored to fibrosis-insulated atrial bundles.


Assuntos
Fibrilação Atrial/patologia , Átrios do Coração/patologia , Adulto , Idoso , Fibrilação Atrial/etiologia , Fibrilação Atrial/fisiopatologia , Técnicas de Imagem Cardíaca , Meios de Contraste , Mapeamento Epicárdico/métodos , Gadolínio , Átrios do Coração/fisiopatologia , Humanos , Angiografia por Ressonância Magnética/métodos , Pessoa de Meia-Idade
16.
J Physiol ; 593(6): 1443-58, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25384790

RESUMO

KEY POINTS: Atrial fibrillation is often initiated and perpetuated by abnormal electrical pulses repetitively originating from regions outside the heart's natural pacemaker. In this study we examined the causal role of abnormal calcium releases from the sarcoplasmic reticulum in producing repetitive electrical discharges in atrial cells and tissues. Calsequestrin2 is a protein that stabilizes the closed state of calcium release channels, i.e. the ryanodine receptors. In the atria from mice predisposed to abnormal calcium releases secondary to the absence of calsequestrin2, we observed abnormal repetitive electrical discharges that may lead to atrial fibrillation. Here, we report a novel pathological rhythm generator. Specifically, abnormal calcium release leads to electrical activation, which in turn results in another abnormal calcium release. This process repeats itself and thus sustains the repetitive electrical discharges. These results suggest that improving the stability of ryanodine receptors might be useful to treat atrial fibrillation. ABSTRACT: Aberrant diastolic calcium (Ca) release due to leaky ryanodine receptors (RyR2s) has been recently associated with atrial fibrillation (AF) and catecholaminergic polymorphic ventricular tachycardia (CPVT). However, it remains unclear how diastolic Ca release contributes to the rising of rapid repetitive focal activity, which is considered as a common AF triggering mechanism. To address this question, we conducted simultaneous voltage/Ca optical mapping in atrial tissue and one-/two-dimensional confocal imaging in atrial tissue and myocytes from wild-type (WT, n = 15) and CPVT mice lacking calsequestrin 2 (Casq2(-/-), n = 45), which promotes diastolic Ca release. During ß-adrenergic stimulation (100 nM isoproterenol), only Casq2(-/-) atrial myocytes showed pacing-induced self-sustained repetitive activity (31 ± 21 s vs. none in WT). Importantly, in atrial tissue, this repetitive activity could translate to Ca-dependent focal arrhythmia. Ectopic action potential (AP) firing during repetitive activity occurred only when diastolic Ca release achieved a sufficient level of synchronization. The AP, in turn, synchronized subsequent diastolic Ca release by temporally aligning multiple sources of Ca waves both within individual myocytes and throughout the atrial tissue. This alternating interplay between AP and diastolic Ca release perpetuates the self-sustaining repetitive activity. In fact, pharmacological disruption of synchronized diastolic Ca release (by ryanodine) prevented aberrant APs; and vice versa, the inhibition of AP (by TTX or 0 Na, 0 Ca solution) de-synchronized diastolic Ca release. Taken together, these results suggest that a cyclical interaction between synchronized diastolic Ca release and AP forms a pathological rhythm generator that is involved in Ca-dependent atrial arrhythmias in CPVT.


Assuntos
Fibrilação Atrial/metabolismo , Sinalização do Cálcio , Calsequestrina/genética , Potenciais da Membrana , Miócitos Cardíacos/fisiologia , Potenciais de Ação , Animais , Fibrilação Atrial/genética , Células Cultivadas , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Periodicidade
17.
Circulation ; 130(4): 315-24, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24838362

RESUMO

BACKGROUND: Although sinoatrial node (SAN) dysfunction is a hallmark of human heart failure (HF), the underlying mechanisms remain poorly understood. We aimed to examine the role of adenosine in SAN dysfunction and tachy-brady arrhythmias in chronic HF. METHODS AND RESULTS: We applied multiple approaches to characterize SAN structure, SAN function, and adenosine A1 receptor expression in control (n=17) and 4-month tachypacing-induced chronic HF (n=18) dogs. Novel intramural optical mapping of coronary-perfused right atrial preparations revealed that adenosine (10 µmol/L) markedly prolonged postpacing SAN conduction time in HF by 206 ± 99 milliseconds (versus 66 ± 21 milliseconds in controls; P=0.02). Adenosine induced SAN intranodal conduction block or microreentry in 6 of 8 dogs with HF versus 0 of 7 controls (P=0.007). Adenosine-induced SAN conduction abnormalities and automaticity depression caused postpacing atrial pauses in HF versus control dogs (17.1 ± 28.9 versus 1.5 ± 1.3 seconds; P<0.001). Furthermore, 10 µmol/L adenosine shortened atrial repolarization and led to pacing-induced atrial fibrillation in 6 of 7 HF versus 0 of 7 control dogs (P=0.002). Adenosine-induced SAN dysfunction and atrial fibrillation were abolished or prevented by adenosine A1 receptor antagonists (50 µmol/L theophylline/1 µmol/L 8-cyclopentyl-1,3-dipropylxanthine). Adenosine A1 receptor protein expression was significantly upregulated during HF in the SAN (by 47 ± 19%) and surrounding atrial myocardium (by 90 ± 40%). Interstitial fibrosis was significantly increased within the SAN in HF versus control dogs (38 ± 4% versus 23 ± 4%; P<0.001). CONCLUSIONS: In chronic HF, adenosine A1 receptor upregulation in SAN pacemaker and atrial cardiomyocytes may increase cardiac sensitivity to adenosine. This effect may exacerbate conduction abnormalities in the structurally impaired SAN, leading to SAN dysfunction, and potentiate atrial repolarization shortening, thereby facilitating atrial fibrillation. Atrial fibrillation may further depress SAN function and lead to tachy-brady arrhythmias in HF.


Assuntos
Bradicardia/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Receptor A1 de Adenosina/biossíntese , Nó Sinoatrial/fisiopatologia , Taquicardia/fisiopatologia , Imagens com Corantes Sensíveis à Voltagem/métodos , Potenciais de Ação/efeitos dos fármacos , Adenosina/administração & dosagem , Adenosina/farmacologia , Adenosina/toxicidade , Antagonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/uso terapêutico , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/fisiopatologia , Bradicardia/etiologia , Estimulação Cardíaca Artificial/efeitos adversos , Cães , Relação Dose-Resposta a Droga , Fibrose , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Insuficiência Cardíaca/genética , Receptor A1 de Adenosina/genética , Receptor A1 de Adenosina/fisiologia , Nó Sinoatrial/efeitos dos fármacos , Nó Sinoatrial/patologia , Taquicardia/etiologia , Teofilina/farmacologia , Teofilina/uso terapêutico , Regulação para Cima , Xantinas/farmacologia , Xantinas/uso terapêutico
18.
Am J Physiol Heart Circ Physiol ; 309(12): H2077-86, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26453335

RESUMO

Cross-bridge cycling rate is an important determinant of cardiac output, and its alteration can potentially contribute to reduced output in heart failure patients. Additionally, animal studies suggest that this rate can be regulated by muscle length. The purpose of this study was to investigate cross-bridge cycling rate and its regulation by muscle length under near-physiological conditions in intact right ventricular muscles of nonfailing and failing human hearts. We acquired freshly explanted nonfailing (n = 9) and failing (n = 10) human hearts. All experiments were performed on intact right ventricular cardiac trabeculae (n = 40) at physiological temperature and near the normal heart rate range. The failing myocardium showed the typical heart failure phenotype: a negative force-frequency relationship and ß-adrenergic desensitization (P < 0.05), indicating the expected pathological myocardium in the right ventricles. We found that there exists a length-dependent regulation of cross-bridge cycling kinetics in human myocardium. Decreasing muscle length accelerated the rate of cross-bridge reattachment (ktr) in both nonfailing and failing myocardium (P < 0.05) equally; there were no major differences between nonfailing and failing myocardium at each respective length (P > 0.05), indicating that this regulatory mechanism is preserved in heart failure. Length-dependent assessment of twitch kinetics mirrored these findings; normalized dF/dt slowed down with increasing length of the muscle and was virtually identical in diseased tissue. This study shows for the first time that muscle length regulates cross-bridge kinetics in human myocardium under near-physiological conditions and that those kinetics are preserved in the right ventricular tissues of heart failure patients.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Testes de Função Cardíaca/métodos , Contração Miocárdica , Disfunção Ventricular Direita/fisiopatologia , Adulto , Idoso , Temperatura Corporal , Débito Cardíaco , Feminino , Insuficiência Cardíaca/patologia , Humanos , Técnicas In Vitro , Cinética , Masculino , Pessoa de Meia-Idade , Músculos/fisiopatologia , Miocárdio/patologia , Receptores Adrenérgicos beta , Malha Trabecular/fisiopatologia , Disfunção Ventricular Direita/patologia , Adulto Jovem
19.
Int J Mol Sci ; 16(5): 10834-54, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25984605

RESUMO

Atrial fibrillation (AF) is the most common heart rhythm disturbance, and its treatment is an increasing economic burden on the health care system. Despite recent intense clinical, experimental and basic research activity, the treatment of AF with current antiarrhythmic drugs and catheter/surgical therapies remains limited. Radiofrequency catheter ablation (RFCA) is widely used to treat patients with AF. Current clinical ablation strategies are largely based on atrial anatomy and/or substrate detected using different approaches, and they vary from one clinical center to another. The nature of clinical ablation leads to ambiguity regarding the optimal patient personalization of the therapy partly due to the fact that each empirical configuration of ablation lines made in a patient is irreversible during one ablation procedure. To investigate optimized ablation lesion line sets, in silico experimentation is an ideal solution. 3D computer models give us a unique advantage to plan and assess the effectiveness of different ablation strategies before and during RFCA. Reliability of in silico assessment is ensured by inclusion of accurate 3D atrial geometry, realistic fiber orientation, accurate fibrosis distribution and cellular kinetics; however, most of this detailed information in the current computer models is extrapolated from animal models and not from the human heart. The predictive power of computer models will increase as they are validated with human experimental and clinical data. To make the most from a computer model, one needs to develop 3D computer models based on the same functionally and structurally mapped intact human atria with high spatial resolution. The purpose of this review paper is to summarize recent developments in clinically-derived computer models and the clinical insights they provide for catheter ablation.


Assuntos
Fibrilação Atrial/cirurgia , Ablação por Cateter , Simulação por Computador , Animais , Fibrose , Humanos , Modelos Cardiovasculares , Veias Pulmonares/patologia
20.
Circulation ; 125(15): 1835-47, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22412072

RESUMO

BACKGROUND: Several arrhythmogenic mechanisms have been inferred from animal heart failure models. However, the translation of these hypotheses is difficult because of the lack of functional human data. We aimed to investigate the electrophysiological substrate for arrhythmia in human end-stage nonischemic cardiomyopathy. METHODS AND RESULTS: We optically mapped the coronary-perfused left ventricular wedge preparations from human hearts with end-stage nonischemic cardiomyopathy (heart failure, n=10) and nonfailing hearts (NF, n=10). Molecular remodeling was studied with immunostaining, Western blotting, and histological analyses. Heart failure produced heterogeneous prolongation of action potential duration resulting in the decrease of transmural action potential duration dispersion (64 ± 12 ms versus 129 ± 15 ms in NF, P<0.005). In the failing hearts, transmural activation was significantly slowed from the endocardium (39 ± 3 cm/s versus 49 ± 2 cm/s in NF, P=0.008) to the epicardium (28 ± 3 cm/s versus 40 ± 2 cm/s in NF, P=0.008). Conduction slowing was likely due to connexin 43 (Cx43) downregulation, decreased colocalization of Cx43 with N-cadherin (40 ± 2% versus 52 ± 5% in NF, P=0.02), and an altered distribution of phosphorylated Cx43 isoforms by the upregulation of the dephosphorylated Cx43 in both the subendocardium and subepicardium layers. Failing hearts further demonstrated spatially discordant conduction velocity alternans which resulted in nonuniform propagation discontinuities and wave breaks conditioned by strands of increased interstitial fibrosis (fibrous tissue content in heart failure 16.4 ± 7.7 versus 9.9 ± 1.4% in NF, P=0.02). CONCLUSIONS: Conduction disorder resulting from the anisotropic downregulation of Cx43 expression, the reduction of Cx43 phosphorylation, and increased fibrosis is likely to be a critical component of arrhythmogenic substrate in patients with nonischemic cardiomyopathy.


Assuntos
Arritmias Cardíacas/etiologia , Cardiomiopatias/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Potenciais de Ação , Animais , Conexina 43/análise , Conexina 43/metabolismo , Cães , Insuficiência Cardíaca/complicações , Humanos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA