RESUMO
Integrated continuous manufacturing is entering the biopharmaceutical industry. The main drivers range from improved economics, manufacturing flexibility, and more consistent product quality. However, studies on fully integrated production platforms have been limited due to the higher degree of system complexity, limited process information, disturbance, and drift sensitivity, as well as difficulties in digital process integration. In this study, we present an automated end-to-end integrated process consisting of a perfusion bioreactor, CaptureSMB, virus inactivation (VI), and two polishing steps to produce an antibody from an instable cell line. A supervisory control and data acquisition (SCADA) system was developed, which digitally integrates unit operations and analyzers, collects and centrally stores all process data, and allows process-wide monitoring and control. The integrated system consisting of bioreactor and capture step was operated initially for 4 days, after which the full end-to-end integrated run with no interruption lasted for 10 days. In response to decreasing cell-specific productivity, the supervisory control adjusted the loading duration of the capture step to obtain high capacity utilization without yield loss and constant antibody quantity for subsequent operations. Moreover, the SCADA system coordinated VI neutralization and discharge to enable constant loading conditions on the polishing unit. Lastly, the polishing was sufficiently robust to cope with significantly increased aggregate levels induced on purpose during virus inactivation. It is demonstrated that despite significant process disturbances and drifts, a robust process design and the supervisory control enabled constant (optimum) process performance and consistent product quality.
Assuntos
Anticorpos , Automação/métodos , Reatores Biológicos , Técnicas de Cultura de Células/métodos , Perfusão/métodos , Animais , Anticorpos/análise , Anticorpos/isolamento & purificação , Anticorpos/metabolismo , Células CHO , Cricetinae , Cricetulus , Proteínas Recombinantes/metabolismo , Inativação de VírusRESUMO
Monoclonal antibodies (mAbs) and related recombinant proteins continue to gain importance in the treatment of a great variety of diseases. Despite significant advances, their manufacturing can still present challenges owing to their molecular complexity and stringent regulations with respect to product purity, stability, safety, and so forth. In this context, protein aggregates are of particular concern due to their immunogenic potential. During manufacturing, mAbs routinely undergo acidic treatment to inactivate viral contamination, which can lead to their aggregation and thereby to product loss. To better understand the underlying mechanism so as to propose strategies to mitigate the issue, we systematically investigated the denaturation and aggregation of two mAbs at low pH as well as after neutralization. We observed that at low pH and low ionic strength, mAb surface hydrophobicity increased whereas molecular size remained constant. After neutralization of acidic mAb solutions, the fraction of monomeric mAb started to decrease accompanied by an increase on average mAb size. This indicates that electrostatic repulsion prevents denatured mAb molecules from aggregation under acidic pH and low ionic strength, whereas neutralization reduces this repulsion and coagulation initiates. Limiting denaturation at low pH by d-sorbitol addition or temperature reduction effectively improved monomer recovery after neutralization. Our findings might be used to develop innovative viral inactivation procedures during mAb manufacturing that result in higher product yields.
Assuntos
Anticorpos Monoclonais , Biotecnologia/métodos , Inativação de Vírus , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Reatores Biológicos , Células CHO , Cricetinae , Cricetulus , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Concentração Osmolar , Agregados Proteicos , Desdobramento de Proteína , Espectrometria de FluorescênciaRESUMO
The high cost of protein A resins drives the biopharmaceutical industry to maximize its lifetime, which is limited by several processes, usually referred to as resin aging. In this work, two model based strategies are presented, aiming to control and improve the resin lifetime. The first approach, purely statistical, enables qualitative monitoring of the column state and prediction of column performance indicators (e.g. yield, purity and dynamic binding capacity) from chromatographic on-line data (e.g. UV signal). The second one, referred to as hybrid modeling, is based on a lumped kinetic model, which includes two aging parameters fitted on several resin cycling experimental campaigns with varying cleaning procedures (CP). The first aging parameter accounts for binding capacity deterioration (caused by ligand degradation, leaching, and pore occlusion), while the second accounts for a decreased mass transfer rate (mainly caused by fouling). The hybrid model provides important insights into the prevailing aging mechanism as a function of the different CPs. In addition, it can be applied to model based CP optimization and yield forecasting with the capability of state estimation corrections based on on-line process information. Both approaches show promising results, which could help to significantly extend the resin lifetime. This comes along with increased understanding, reduced experimental effort, decreased cost of goods, and improved process robustness.
Assuntos
Cromatografia/métodos , Modelos Teóricos , Resinas Vegetais/química , Proteína Estafilocócica A/química , Algoritmos , Cinética , Análise dos Mínimos Quadrados , Ligantes , Análise de Componente Principal , Estatística como AssuntoRESUMO
On-line monitoring tools for downstream chromatographic processing (DSP) of biotherapeutics can enable fast actions to correct for disturbances in the upstream, gain process understanding, and eventually lead to process optimization. While UV/Vis spectroscopy is mostly assessing the protein's amino acid composition and the application of Fourier transform infrared spectroscopy is limited due to strong water interactions, Raman spectroscopy is able to assess the secondary and tertiary protein structure without significant water interactions. The aim of this work is to implement the Raman technology in DSP, by designing an in-line flow cell with a reduced dead volume of 80 µL and a reflector to increase the signal intensity as well as developing a chemometric modeling path. In this context, measurement settings were adjusted and spectra were taken from different chromatographic breakthrough curves of IgG1 in harvest. The resulting models show a small average RMSEP of 0.12 mg/mL, on a broad calibration range from 0 to 2.82 mg/mL IgG1. This work highlights the benefits of model assisted Raman spectroscopy in chromatography with complex backgrounds, lays the fundamentals for in-line monitoring of IgG1, and enables advanced control strategies. Moreover, the approach might be extended to further critical quality attributes like aggregates or could be transferred to other process steps.