Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37340988

RESUMO

BACKGROUND: Variability in sugar content between raw and cooked sweetpotato storage roots impact nutritional and dietary importance with implications for consumer preference. High-throughput phenotyping is required to breed varieties that satisfy consumer preferences. RESULTS: Near-infrared reflectance spectroscopy (NIRS) calibration curves were developed for analysing sugars in baked storage roots using 147 genotypes from a population segregating for sugar content and other traits. The NIRS prediction curves had high coefficients of determination in calibration (R2 c ) of 0.96 (glucose), 0.93 (fructose), 0.96 (sucrose), and 0.96 (maltose). The corresponding coefficients of determination for cross-validation (R2 cv ) were 0.92 (glucose), 0.89 (fructose), 0.96 (sucrose) and 0.93 (maltose) and were similar to the R2 c for all sugars measured. The ratios of the standard deviation of the reference set to the standard error of cross-validation were greater than three for all sugars. These results confirm the applicability of the NIRS curves in efficiently determining sugar content in baked sweetpotato storage roots. External validation was performed on an additional 70 genotypes. Coefficients of determination (r2 ) were 0.88 (glucose), 0.88 (fructose), 0.86 (sucrose) and 0.49 (maltose). The results were comparable to those found for the calibration and cross-validation in fructose, glucose, and sucrose, but were moderate for maltose due to the low variability of maltose content in the population. CONCLUSIONS: NIRS can be used for screening sugar content in baked sweetpotato storage roots in breeding programs and can be used to assist with the development of improved sweetpotato varieties that better meet consumer preferences. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Theor Appl Genet ; 133(1): 23-36, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31595335

RESUMO

KEY MESSAGE: ß-Carotene content in sweetpotato is associated with the Orange and phytoene synthase genes; due to physical linkage of phytoene synthase with sucrose synthase, ß-carotene and starch content are negatively correlated. In populations depending on sweetpotato for food security, starch is an important source of calories, while ß-carotene is an important source of provitamin A. The negative association between the two traits contributes to the low nutritional quality of sweetpotato consumed, especially in sub-Saharan Africa. Using a biparental mapping population of 315 F1 progeny generated from a cross between an orange-fleshed and a non-orange-fleshed sweetpotato variety, we identified two major quantitative trait loci (QTL) on linkage group (LG) three (LG3) and twelve (LG12) affecting starch, ß-carotene, and their correlated traits, dry matter and flesh color. Analysis of parental haplotypes indicated that these two regions acted pleiotropically to reduce starch content and increase ß-carotene in genotypes carrying the orange-fleshed parental haplotype at the LG3 locus. Phytoene synthase and sucrose synthase, the rate-limiting and linked genes located within the QTL on LG3 involved in the carotenoid and starch biosynthesis, respectively, were differentially expressed in Beauregard versus Tanzania storage roots. The Orange gene, the molecular switch for chromoplast biogenesis, located within the QTL on LG12 while not differentially expressed was expressed in developing roots of the parental genotypes. We conclude that these two QTL regions act together in a cis and trans manner to inhibit starch biosynthesis in amyloplasts and enhance chromoplast biogenesis, carotenoid biosynthesis, and accumulation in orange-fleshed sweetpotato. Understanding the genetic basis of this negative association between starch and ß-carotene will inform future sweetpotato breeding strategies targeting sweetpotato for food and nutritional security.


Assuntos
Regulação da Expressão Gênica de Plantas , Ipomoea batatas/genética , Poliploidia , Locos de Características Quantitativas/genética , Amido/metabolismo , beta Caroteno/metabolismo , Alelos , Meio Ambiente , Estudos de Associação Genética , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Característica Quantitativa Herdável
3.
Nutrients ; 9(9)2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28850070

RESUMO

A dynamic human gastrointestinal (GI) model was used to digest cooked tubers from purple-fleshed Amachi and Leona potato cultivars to study anthocyanin biotransformation in the stomach, small intestine and colonic vessels. Colonic Caco-2 cancer cells and non-tumorigenic colonic CCD-112CoN cells were tested for cytotoxicity and cell viability after 24 h exposure to colonic fecal water (FW) digests (0%, 10%, 25%, 75% and 100% FW in culture media). After 24 h digestion, liquid chromatography-mass spectrometry identified 36 and 15 anthocyanin species throughout the GI vessels for Amachi and Leona, respectively. The total anthocyanin concentration was over thirty-fold higher in Amachi compared to Leona digests but seven-fold higher anthocyanin concentrations were noted for Leona versus Amachi in descending colon digests. Leona FW showed greater potency to induce cytotoxicity and decrease viability of Caco-2 cells than observed with FW from Amachi. Amachi FW at 100% caused cytotoxicity in non-tumorigenic cells while FW from Leona showed no effect. The present findings indicate major variations in the pattern of anthocyanin breakdown and release during digestion of purple-fleshed cultivars. The differing microbial anthocyanin metabolite profiles in colonic vessels between cultivars could play a significant role in the impact of FW toxicity on tumor and non-tumorigenic cells.


Assuntos
Antocianinas/farmacologia , Neoplasias do Colo/química , Tubérculos/química , Solanum tuberosum/química , Adulto , Idoso , Antocianinas/química , Antocianinas/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Fezes/química , Feminino , Trato Gastrointestinal/fisiologia , Humanos , Masculino , Refeições , Pessoa de Meia-Idade , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA