Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nature ; 624(7992): 653-662, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993717

RESUMO

Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis1. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta2. Defects in enamel formation are also found in patients with autoimmune polyglandular syndrome type-1 (APS-1), caused by AIRE deficiency3,4, and in patients diagnosed with coeliac disease5-7. However, the underlying mechanisms remain unclear. Here we show that the vast majority of patients with APS-1 and coeliac disease develop autoantibodies (mostly of the IgA isotype) against ameloblast-specific proteins, the expression of which is induced by AIRE in the thymus. This in turn results in a breakdown of central tolerance, and subsequent generation of corresponding autoantibodies that interfere with enamel formation. However, in coeliac disease, the generation of such autoantibodies seems to be driven by a breakdown of peripheral tolerance to intestinal antigens that are also expressed in enamel tissue. Both conditions are examples of a previously unidentified type of IgA-dependent autoimmune disorder that we collectively name autoimmune amelogenesis imperfecta.


Assuntos
Amelogênese Imperfeita , Autoanticorpos , Doença Celíaca , Poliendocrinopatias Autoimunes , Humanos , Amelogênese Imperfeita/complicações , Amelogênese Imperfeita/imunologia , Autoanticorpos/imunologia , Doença Celíaca/complicações , Doença Celíaca/imunologia , Imunoglobulina A/imunologia , Poliendocrinopatias Autoimunes/complicações , Poliendocrinopatias Autoimunes/imunologia , Proteínas/imunologia , Proteínas/metabolismo , Ameloblastos/metabolismo , Esmalte Dentário/imunologia , Esmalte Dentário/metabolismo , Proteína AIRE/deficiência , Antígenos/imunologia , Antígenos/metabolismo , Intestinos/imunologia , Intestinos/metabolismo
2.
Pharmacol Res ; 208: 107380, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39216841

RESUMO

Age-related macular degeneration (AMD) is a common retinal pathology characterized by degeneration of macula's retinal pigment epithelium (RPE) and photoreceptors, visual impairment, or loss. Compared to wet AMD, dry AMD is more common, but lacks cures; therefore, identification of new potential therapeutic targets and treatments is urgent. Increased oxidative stress and declining antioxidant, detoxifying systems contribute to the pathophysiologic mechanisms underlying AMD. The present work shows that the Embryonic Lethal Abnormal Vision-Like 1/Human antigen R (ELAVL1/HuR) and the Vascular Endothelial Growth Factor (VEGF) protein levels are higher in the RPE of both dry and wet AMD patients compared to healthy subjects. Moreover, increased HuR protein levels are detected in the retina, and especially in the RPE layer, of a dry AMD model, the nuclear factor erythroid 2-related factor 2 (Nrf2) / peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) double knock-out mouse. The crosstalk among Nrf2, HuR and VEGF has been also studied in ARPE-19 cells in basal and stressful conditions related to the AMD context (i.e., oxidative stress, autophagy impairment, Nrf2 deficit), offering new evidence of the mutual influence between Nrf2 and HuR, of the dependence of VEGF expression and secretion by these two factors, and of the increased susceptibility of cells to stressful conditions in Nrf2- or HuR-impaired contexts. Overall, this study shows evidence of the interplay among Nrf2, HuR and VEGF, essential factors for RPE homeostasis, and represents an additional piece in the understanding of the complex pathophysiologic mechanisms underlying AMD.


Assuntos
Proteína Semelhante a ELAV 1 , Fator 2 Relacionado a NF-E2 , Epitélio Pigmentado da Retina , Fator A de Crescimento do Endotélio Vascular , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Atrofia Geográfica/metabolismo , Degeneração Macular/metabolismo , Degeneração Macular/fisiopatologia , Degeneração Macular/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Degeneração Macular Exsudativa/metabolismo , Degeneração Macular Exsudativa/genética
3.
Int J Comput Dent ; 0(0): 0, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823540

RESUMO

Learning tooth preparation techniques and the finesse required is an important part of preclinical dental education. Being able to practice surgical skills without loss of Frasaco® teeth while being provided with performance analysis data is a boon to students and educators. We investigated the combination of haptics-enhanced virtual reality (Simodont®) and conventional phantom head practice in a preclinical dental course, evaluating the students' performances and perceptions. Forty students were randomized into two groups: Group One began within a VR-haptic setting while Group Two worked with Frasaco® teeth. Halfway through the course the scenarios were switched. A crown preparation test on Frasaco® teeth was conducted at the end of the course. Students' performances and satisfaction were assessed anonymously. Analysis of the students' performances included clinical metrics (occlusal and axial reduction, convergence angle, damage to adjacent teeth). The perceived usefulness of VR-haptic and phantom head simulations was assessed. In Group One, the tooth preparation metrics were more in line with the requested parameters compared to Group Two. All students ranked VR-haptics highly regarding manual dexterity improvement. In conclusion, this study shows that by combining VR-haptics with conventional dental procedures, it is possible to improve important preparation metrics in fixed prosthodontics tooth preparation.

4.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567500

RESUMO

Age-related macular degeneration (AMD) is the most prevalent form of irreversible blindness worldwide in the elderly population. In our previous studies, we found that deficiencies in the nuclear factor, erythroid 2 like 2 (NFE2L2) and peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) genes caused AMD-like pathological phenotypes in mice. In the present work, we show hijacked epithelial-mesenchymal transition (EMT) due to the common loss of PGC-1α and NFE2L2 (double knock-out, dKO) genes in aged animals. The implanted area was assessed by histology, immunohistochemistry and transmission electron microscopy. Confocal microscopy revealed altered regions in the filamentous actin ring. This contrasted with hexagonal RPE morphology in wild-type mice. The ultrastructural RPE features here illustrated loss of apical microvilli, alteration of cell-cell contact, loss of basal in-folding with deposits on Bruch's membrane, and excessive lipofuscin deposition in dKO samples. We also found the expression of epithelial-mesenchymal transition transcription factors, such as Snail, Slug, collagen 1, vimentin and OB-cadherin, to be significantly different in dKO RPEs. An increased immunoreactivity of senescence markers p16, DEC1 and HMGB1 was also noted. These findings suggest that EMT and senescence pathways may intersect in the retinas of dKO mice. Both processes can be activated by damage to the RPE, which may be caused by increased oxidative stress resulting from the absence of NFE2L2 and PGC-1α genes, important for antioxidant defense. This dKO model may provide useful tools for studying AMD pathogenesis and evaluating novel therapies for this disease.


Assuntos
Senescência Celular , Transição Epitelial-Mesenquimal , Mitocôndrias/patologia , Fator 2 Relacionado a NF-E2/fisiologia , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/fisiologia , Epitélio Pigmentado da Retina/patologia , Animais , Degeneração Macular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais
5.
Int J Mol Sci ; 21(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183173

RESUMO

Increased oxidative stress and mitochondrial damage are observed in protein aggregation diseases, such as age-related macular degeneration (AMD). We have recently reported elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in the retinal pigment epithelial cells (RPE) of the dry AMD-resembling NFE2L2/PGC1α double knockout (dKO) mouse model. Here, we provide evidence of a disturbance in the autolysosomal machinery handling mitochondrial clearance in the RPE cells of one-year-old NFE2L2/PGC1α-deficient mice. Confocal immunohistochemical analysis revealed an upregulation of autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as numerous mitophagy markers, such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN) together with damaged mitochondria. However, we detected no evidence of increased autolysosome formation in transmission electron micrographs or of colocalization of lysosomal marker LAMP2 (lysosome-associated membrane protein 2) and the mitochondrial marker ATP synthase ß in confocal micrographs. Interestingly, we observed an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells together with autofluorescence aggregates. Our results reveal that there is at least a relative decrease of mitophagy in the RPE cells of NFE2L2/PGC1α dKO mice. This further supports the hypothesis that mitophagy is a putative therapy target in AMD-like pathology.


Assuntos
Degeneração Macular/metabolismo , Mitofagia , Fator 2 Relacionado a NF-E2/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Epitélio Pigmentado da Retina/metabolismo , Animais , Deleção de Genes , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Degeneração Macular/genética , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Quinases/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura , Ubiquitina-Proteína Ligases/metabolismo
6.
BMC Med Educ ; 19(1): 273, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31331319

RESUMO

BACKGROUND: Human morphology is a critical component of dental and medical graduate training. Innovations in basic science teaching methods are needed to keep up with an ever-changing landscape of technology. The purpose of this study was to investigate whether students in a medical and dental histology course would have better grades if they used gaming software Kahoot® and whether gamification effects on learning and enjoyment. METHODS: In an effort to both evoke students' interest and expand their skill retention, an online competition using Kahoot® was implemented for first-year students in 2018 (n = 215) at the University of Eastern Finland. Additionally, closed (160/215) or open-ended (41/215) feedback questions were collected and analyzed. RESULTS: The Kahoot® gamification program was successful and resulted in learning gains. The overall participant satisfaction using Kahoot® was high, with students (124/160) indicating that gamification increased their motivation to learn. The gaming approach seemed to enable the students to overcome individual difficulties (139/160) and to set up collaboration (107/160); furthermore, gamification promoted interest (109/160), and the respondents found the immediate feedback from senior professionals to be positive (146/160). In the open-ended survey, the students (23/41) viewed collaborative team- and gamification-based learning positively. CONCLUSION: This study lends support to the use of gamification in the teaching of histology and may provide a foundation for designing a gamification-integrated curriculum across healthcare disciplines.


Assuntos
Desempenho Acadêmico , Jogos Experimentais , Histologia/educação , Internet , Ensino , Currículo , Finlândia , Humanos , Estudantes de Medicina
7.
Int J Mol Sci ; 20(22)2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752195

RESUMO

Age-related macular degeneration (AMD) is a mounting cause of loss of sight in the elderly in the developed countries, a trend enhanced by the continual ageing of the population. AMD is a multifactorial and only partly understood, malady. Unfortunately, there is no effective treatment for most AMD patients. It is known that oxidative stress (OS) damages the retinal pigment epithelium (RPE) and contributes to the progression of AMD. We review here the potential importance of two OS-related cellular systems in relation to AMD. First, the nuclear factor erythroid 2-related factor 2 (NFE2L2; NRF2)-mediated OS response signalling pathway is important in the prevention of oxidative damage and a failure of this system could be critical in the development of AMD. Second, epithelial-to-mesenchymal transition (EMT) represents a change in the cellular phenotype, which ultimately leads to the fibrosis encountered in RPE, a characteristic of AMD. Many of the pathways triggering EMT are promoted by OS. The possible interconnections between these two signalling routes are discussed here. From a broader perspective, the control of NFE2L2 and EMT as ways of preventing OS-derived cellular damage could be potentially valuable in the therapy of AMD.


Assuntos
Degeneração Macular/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais , Progressão da Doença , Transição Epitelial-Mesenquimal , Fibrose , Humanos , Degeneração Macular/metabolismo , Estresse Oxidativo , Epitélio Pigmentado da Retina/metabolismo
8.
Biogerontology ; 17(4): 749-61, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27125427

RESUMO

Collagen XVIII has the structural properties of both collagen and proteoglycan. It has been found at the basement membrane/stromal interface where it is thought to mediate their attachment. Endostatin, a proteolytic fragment from collagen XVIII C-terminal end has been reported to possess anti-angiogenic properties. Age-related vision loss in collagen XVIII mutant mice has been accompanied with a pathological accumulation of deposits under the retinal pigment epithelium (RPE). We have recently demonstrated that impaired proteasomal and autophagy clearance are associated with the pathogenesis of age-related macular degeneration. This study examined the staining levels of proteasomal and autophagy markers in the RPE of different ages of the Col18a1 (-/-) mice. Eyes from 3, 6-7, 10-13 and 18 months old mice were enucleated and embedded in paraffin according to the routine protocol. Sequential 5 µm-thick parasagittal samples were immunostained for proteasome and autophagy markers ubiquitin (ub), SQSTM1/p62 and beclin-1. The levels of immunopositivity in the RPE cells were evaluated by confocal microscopy. Collagen XVIII knock-out mice had undergone age-related RPE degeneration accompanied by an accumulation of drusen-like deposits. Ub protein conjugate staining was prominent in both RPE cytoplasm and extracellular space whereas SQSTM1/p62 and beclin-1 stainings were clearly present in the basal part of RPE cell cytoplasm in the Col18a1 (-/-) mice. SQSTM1/p62 displayed mild extracellular space staining. Disturbed proteostasis regulated by collagen XVIII might be responsible for the RPE degeneration, increased protein aggregation, ultimately leading to choroidal neovascularization.


Assuntos
Envelhecimento/metabolismo , Colágeno/metabolismo , Degeneração Macular/metabolismo , Deficiências na Proteostase/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Envelhecimento/patologia , Animais , Feminino , Degeneração Macular/patologia , Masculino , Camundongos , Camundongos Knockout , Deficiências na Proteostase/patologia , Epitélio Pigmentado da Retina/patologia
9.
Acta Odontol Scand ; 74(4): 307-14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26763602

RESUMO

OBJECTIVE: The aim of this work is to investigate the possible role of Toll-like receptor 4 (TLR4) during the development of mouse tooth germ. TLR4 is well known to inhibit mineralization and cause inflammation in mature odontoblasts and dental pulp cells. However, unlike these pathological functions of TLR4, little is known about the developmental function(s) of TLR4 during tooth development. MATERIALS AND METHODS: TLR4 expression was studied via Western blot in developing lower mouse incisors from E13.5 to E18.5. To generate functional data about the effects of TLR4, a specific agonist (LPS) was applied to the medium of in vitro tooth germ cultures, followed by Western blot, histochemical staining, ELISA assay, in situ hybridization and RT-qPCR. RESULTS: Increased accumulation of biotin-labelled LPS was detected in the enamel organ and in preodontoblasts. LPS treatment induced degradation of the inhibitor molecule (IκB) of the NF-κB signalling pathway. However, no morphological alterations were detected in cultured tissue after LPS addition at the applied dosage. Activation of TLR4 inhibited the mineralization of enamel and dentin, as demonstrated by alizarin red staining and as decreased levels of collagen type X. mRNA expression of ameloblastin was elevated after LPS administration. CONCLUSION: These results demonstrate that TLR4 may decrease the mineralization of hard tissues of the tooth germ and may trigger the maturation of ameloblasts; it can give valuable information to understand better congenital tooth abnormalities.


Assuntos
Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/fisiologia , Calcificação de Dente/fisiologia , Germe de Dente/fisiologia , Ameloblastos/efeitos dos fármacos , Animais , Colágeno Tipo X/análise , Colágeno Tipo X/efeitos dos fármacos , Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/metabolismo , Proteínas do Esmalte Dentário/análise , Proteínas do Esmalte Dentário/efeitos dos fármacos , Dentina/efeitos dos fármacos , Dentina/metabolismo , Órgão do Esmalte/efeitos dos fármacos , Órgão do Esmalte/metabolismo , Proteínas I-kappa B/análise , Proteínas I-kappa B/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos , Odontoblastos/efeitos dos fármacos , Odontoblastos/metabolismo , Odontogênese/efeitos dos fármacos , Odontogênese/fisiologia , Técnicas de Cultura de Órgãos , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Calcificação de Dente/efeitos dos fármacos , Germe de Dente/efeitos dos fármacos
10.
J Dent Educ ; 88(3): 342-347, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37964502

RESUMO

OBJECTIVES: According to our earlier study, background music can help foster dental preclinical manual dexterity training and learning and has the potential to increase student satisfaction and productivity. Deep diaphragmatic breathing helps produce a relaxed mental state and is considered a behavioral coping strategy to reduce anxiety. Experimental data on whether background music combined with deep belly breathing reduces the stress and anxiety of preclinical dental students during practice is lacking. Thus, we focused on evaluating the effects of the combined use of these two techniques on dental students during preclinical manual skills training. METHODS: Thirty-one voluntary 3rd-year dental students' anxiety levels and their behavioral changes were monitored via anonymous, voluntary surveys including the Patient Health Questionnaire-4, General Health Questionnaire-12 (GHQ-12), and Visual Analogue Scale for Anxiety (VAS-A). RESULTS: Overall, stress measured by GHQ-12 decreased significantly in female students (p = 0.025), but not in males. Both background music and deep belly breathing significantly reduced all students' fear and stress based on their VAS-A scores in practice. However, a clear difference from the nonuse of coping strategies could not be conclusively shown. The students regarded the course positively based on survey replies. CONCLUSIONS: The combined use of the two coping strategies delivered beneficial effects to the preclinical dental students: they reduced the amount of stress in the supervised preclinical students and considerably cut down the students' anxiety. Further investigation of this new dental training scenario may help professionals provide better student education and care management during the dental preclinical phase.


Assuntos
Música , Masculino , Humanos , Feminino , Estudantes de Odontologia , Ansiedade , Aprendizagem
11.
Amino Acids ; 44(1): 235-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21997537

RESUMO

Transglutaminase 2 (TG2) has been known for a long time to be associated with the in vivo apoptosis program of various cell types including T cells. Though the expression of the enzyme was strongly induced in mouse thymocytes following apoptosis induction in vivo, no significant induction of TG2 could be detected, when thymocytes were induced to die by the same stimuli in vitro indicating that signals arriving from the tissue environment are required for the in vivo induction of the enzyme in apoptotic thymocytes. Previous studies have shown that one of these signals is transforming growth factor-ß (TGF-ß) which is released by macrophages engulfing apoptotic cells. Besides TGF-ß, the TG2 promoter contains retinoic acid response elements as well. Here we show that in vitro retinoic acids, or TGF-ß and retinoic acids together can significantly enhance the TG2 mRNA expression in dying thymocytes, and the apoptotic signal contributes to the TG2 induction. Inhibition of retinoic acid synthesis either by alcohol or retinaldehyde dehydrogenases significantly attenuates the in vivo induction of TG2 following apoptosis induction indicating that retinoids indeed might contribute in vivo to the apoptosis-related TG2 expression. What is more, the in vivo apoptosis induction in the thymus is accompanied by an enhanced retinoid-dependent transcriptional activity due to the enhanced retinoid synthesis by macrophages engulfing apoptotic cells. Our data reveal a new crosstalk between macrophages and apoptotic cells, in which apoptotic cell uptake-induced retinoid synthesis in macrophages enhances TG2 expression in the dying thymocytes.


Assuntos
Macrófagos Peritoneais/metabolismo , Retinoides/biossíntese , Timócitos/enzimologia , Família Aldeído Desidrogenase 1 , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Animais , Apoptose , Células Cultivadas , Expressão Gênica , Genes Reporter , Isoenzimas/genética , Isoenzimas/metabolismo , Macrófagos Peritoneais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Timócitos/fisiologia , Timo/citologia , Timo/enzimologia , Ativação Transcricional
12.
J Dent Educ ; 87(8): 1170-1179, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37158644

RESUMO

BACKGROUND: The acquisition of manual skills is essential in preclinical dental training. Background music improves the learning of many manual skills, though we found no data on the consequences of background music on preclinical manual skills training of dental students. OBJECTIVE: The first aim of this project was to explore whether listening to slow background music could reduce the stress of students when learning how to perform cavity preparations and restorations in a simulation laboratory. The second aim of this study was to determine the impact of slow background music on the quality and time used during cavity preparation. METHOD: We invited all of the 40 third-year dental students to participate in the study, of whom 88% chose to anonymously fill in questionnaires on their subjective evaluations of the effects of slow background music on the stress or anxiety levels experienced during the course. Twenty-four students further volunteered to participate in a cross-over study on the impact of slow background music on the quality of and time used during cavity preparation. RESULTS: The overall satisfaction with the slow background music was high. In particular, the music reduced stress but also increased motivation to learn and practice. Communication in the classroom went well despite the music. Time use and quality of cavity preparation were enhanced. CONCLUSION: This study lends support to the use of slow background music in preclinical cariology training, as it appeared to have helpful effects on dental skills education and practice.


Assuntos
Música , Humanos , Estudos Cross-Over , Estudantes de Odontologia , Avaliação Educacional , Aprendizagem , Competência Clínica
13.
J Clin Med ; 12(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445366

RESUMO

The aim of the study was to investigate oxidative stress as well as cellular protein accumulation in corneal diseases including keratoconus (KC), macular corneal dystrophy (MCD), and Fuchs endothelial corneal dystrophy (FECD) at their primary affecting sites. Corneal buttons from KC, MCD, and FECD patients, as well as healthy controls, were analyzed immunohistochemically to evaluate the presence of oxidative stress and the function of the proteostasis network. 4-Fydroxynonenal (4-HNE) was used as a marker of oxidative stress, whereas the levels of catalase and heat-shock protein 70 (HSP70) were analyzed to evaluate the response of the antioxidant defense system and molecular chaperones, respectively. Sequestosome 1 (SQSTM1) levels were determined to assess protein aggregation and the functionality of autophagic degradation. Basal epithelial cells of the KC samples showed increased levels of oxidative stress marker 4-HNE and antioxidant enzyme catalase together with elevated levels of HSP70 and accumulation of SQSTM1. Corneal stromal cells and endothelial cells from MCD and FECD samples, respectively, showed similarly increased levels of these markers. All corneal diseases showed the presence of oxidative stress and activation of the molecular chaperone response to sustain protein homeostasis. However, the accumulation of protein aggregates suggests insufficient function of the protective mechanisms to limit the oxidative damage and removal of protein aggregates via autophagy. These results suggest that oxidative stress has a role in KC, MCD, and FECD at the cellular level as a secondary outcome. Thus, antioxidant- and autophagy-targeted therapies could be included as supporting care when treating KC or corneal dystrophies.

14.
Mol Vis ; 18: 1927-36, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22876117

RESUMO

PURPOSE: To determine the extracellular matrix proteins involved in the formation of human granular and lattice type I corneal stromal dystrophies, the expression patterns of fibrillin-2, tenascin-C, matrilin-2, and matrilin-4 were compared in human corneal stromal dystrophy samples. METHODS: Ten cases of granular dystrophy, 7 cases of lattice dystrophy, and 6 normal corneal buttons collected during corneal transplantation were examined for their expression patterns of fibrillin-2, tenascin-C, matrilin-2, and matrilin-4 by immunohistochemistry. RESULTS: Highly elevated fibrillin-2, tenascin-C, matrilin-2, and matrilin-4 were observed in the epithelial layer of both granular and lattice type I dystrophies. Fibrillin-2, tenascin-C, and matrilin-4 in the granular dystrophy and all antibodies in the lattice dystrophy showed statistically significant staining in the corneal stroma (p<0.05). Interestingly, fibrillin-2, matrilin-2, and matrilin-4 stained significantly in amyloid plaques of lattice type 1 dystrophy. CONCLUSIONS: Fibrillin-2, tenascin-C, matrilin-2, and matrilin-4 may be markers of the pathogenesis of either granular or lattice type I corneal dystrophy, as revealed by immunohistochemical analysis. Each molecule seems to be involved in the regeneration and reorganization of the corneal matrix in granular and lattice type I dystrophies.


Assuntos
Distrofias Hereditárias da Córnea/genética , Proteínas da Matriz Extracelular/genética , Glicoproteínas/genética , Proteínas dos Microfilamentos/genética , Tenascina/genética , Adulto , Estudos de Casos e Controles , Distrofias Hereditárias da Córnea/metabolismo , Distrofias Hereditárias da Córnea/patologia , Substância Própria/metabolismo , Substância Própria/patologia , Epitélio Corneano/metabolismo , Epitélio Corneano/patologia , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibrilina-2 , Fibrilinas , Expressão Gênica , Marcadores Genéticos , Glicoproteínas/metabolismo , Humanos , Imuno-Histoquímica , Proteínas Matrilinas , Proteínas dos Microfilamentos/metabolismo , Tenascina/metabolismo , Regulação para Cima
15.
Differentiation ; 80(4-5): 241-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20692087

RESUMO

The Notch pathway regulates the renewal and fate decisions of stem cells in multiple tissues. Notch1, -2, as well as the Notch target gene Hes1 are expressed in the putative stem cells in the continuously growing mouse incisors, but so far there has not been any evidence for a function of the Notch pathway in the regulation of the incisor stem cells. We have analysed the effects of the Notch pathway inhibitor DAPT on the maintenance, proliferation, and differentiation of the epithelial stem cells in explant cultures of the mouse incisor. The proximal part of the incisor containing the cervical loop stem cell niche was dissected from newborn mice and cultured for 2-6 days in vitro. DAPT inhibited the expression of Notch target gene Hes1 in the cervical loop indicating that Notch signalling was inhibited in the putative stem cells. The most striking effect of DAPT was a significant reduction in the size of the cervical loop. DAPT caused a marked but partially reversible decrease in cell proliferation, as well as massive apoptosis in the epithelial stem cell niche. Interestingly, restricted apoptosis was detected within the Notch expressing putative stem cells also in the control cultures as well as in incisors in vivo, suggesting that apoptosis may be a mechanism regulating the size of the epithelial stem cell pool in the incisor. The differentiation of the epithelial cells into enamel-forming ameloblasts was not affected by DAPT but the number of preameloblasts was progressively decreased during culture period reflecting the depletion of stem and progenitor cells. Our results indicate that Notch signalling is required for epithelial stem cell survival and enamel formation in the continuously growing mouse incisor.


Assuntos
Células Epiteliais/citologia , Incisivo/crescimento & desenvolvimento , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Ameloblastos/citologia , Ameloblastos/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Embrião de Mamíferos/metabolismo , Células Epiteliais/metabolismo , Feminino , Incisivo/citologia , Masculino , Camundongos , Camundongos Endogâmicos , Células-Tronco/metabolismo
16.
Ageing Res Rev ; 67: 101260, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33516915

RESUMO

Age-related macular degeneration (AMD) is a progressive sight-impairing disease of the elderly. The pathogenic mechanisms of AMD are not well understood although both genetic and many environmental factors have been associated with the development of AMD. One clinical hallmark of AMD is the detrimental aggregation of damaged proteins. Recently, it has been suggested that the weakening of autophagy clearance is an important mechanism in the pathogenesis of AMD. Autophagy is important in the removal of damaged or no longer needed cellular material and its recycling. A considerable number of autophagy-targeting microRNAs (miRNAs), small RNA molecules and epigenetic regulators have been found to be either up- or down-regulated in AMD patients and experimental models. The important role of autophagy-targeting miRNAs is supported by several studies and can open the prospect of the use of these miRNAs in the therapy for AMD.


Assuntos
Degeneração Macular , MicroRNAs , Idoso , Autofagia , Humanos , Degeneração Macular/genética , Degeneração Macular/terapia , MicroRNAs/genética , Epitélio Pigmentado da Retina
17.
Evol Dev ; 12(4): 383-92, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20618434

RESUMO

The single large rodent incisor in each jaw quadrant is evolutionarily derived from a mammalian ancestor with many small incisors. The embryonic placode giving rise to the mouse incisor is considerably larger than the molar placode, and the question remains whether this large incisor placode is a developmental requisite to make a thick incisor. Here we used in vitro culture system to experiment with the molecular mechanism regulating tooth placode development and how mice have thick incisors. We found that large placodes are prone to disintegration and formation of two to three small incisor placodes. The balance between one large or multiple small placodes was altered through the regulation of bone morphogenetic protein (BMP) and Activin signaling. Exogenous Noggin, which inhibits BMP signaling, or exogenous Activin cause the development of two to three incisors. These incisors were more slender than normal incisors. Additionally, two inhibitor molecules, Sostdc1 and Follistatin, which regulate the effects of BMPs and Activin and have opposite expression patterns, are likely to be involved in the incisor placode regulation in vivo. Furthermore, inhibition of BMPs by recombinant Noggin has been previously suggested to cause a change in the tooth identity from the incisor to the molar. This evidence has been used to support a homeobox code in determining tooth identity. Our work provides an alternative interpretation, where the inhibition of BMP signaling can lead to splitting of the large incisor placode and the formation of partly separate incisors, thereby acquiring molar-like morphology without a change in tooth identity.


Assuntos
Ativinas/fisiologia , Padronização Corporal , Proteínas Morfogenéticas Ósseas/fisiologia , Incisivo/embriologia , Ativinas/genética , Ativinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Folistatina/metabolismo , Folistatina/fisiologia , Incisivo/anatomia & histologia , Camundongos , Transdução de Sinais
18.
PLoS Biol ; 5(6): e159, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17564495

RESUMO

Epithelial stem cells reside in specific niches that regulate their self-renewal and differentiation, and are responsible for the continuous regeneration of tissues such as hair, skin, and gut. Although the regenerative potential of mammalian teeth is limited, mouse incisors grow continuously throughout life and contain stem cells at their proximal ends in the cervical loops. In the labial cervical loop, the epithelial stem cells proliferate and migrate along the labial surface, differentiating into enamel-forming ameloblasts. In contrast, the lingual cervical loop contains fewer proliferating stem cells, and the lingual incisor surface lacks ameloblasts and enamel. Here we have used a combination of mouse mutant analyses, organ culture experiments, and expression studies to identify the key signaling molecules that regulate stem cell proliferation in the rodent incisor stem cell niche, and to elucidate their role in the generation of the intrinsic asymmetry of the incisors. We show that epithelial stem cell proliferation in the cervical loops is controlled by an integrated gene regulatory network consisting of Activin, bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and Follistatin within the incisor stem cell niche. Mesenchymal FGF3 stimulates epithelial stem cell proliferation, and BMP4 represses Fgf3 expression. In turn, Activin, which is strongly expressed in labial mesenchyme, inhibits the repressive effect of BMP4 and restricts Fgf3 expression to labial dental mesenchyme, resulting in increased stem cell proliferation and a large, labial stem cell niche. Follistatin limits the number of lingual stem cells, further contributing to the characteristic asymmetry of mouse incisors, and on the basis of our findings, we suggest a model in which Follistatin antagonizes the activity of Activin. These results show how the spatially restricted and balanced effects of specific components of a signaling network can regulate stem cell proliferation in the niche and account for asymmetric organogenesis. Subtle variations in this or related regulatory networks may explain the different regenerative capacities of various organs and animal species.


Assuntos
Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/genética , Incisivo/crescimento & desenvolvimento , Modelos Biológicos , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Ativinas/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Folistatina/metabolismo , Hibridização In Situ , Incisivo/citologia , Camundongos , Camundongos Transgênicos , Transdução de Sinais/genética , Técnicas de Cultura de Tecidos
19.
Prog Retin Eye Res ; 79: 100858, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32298788

RESUMO

Oxidative stress-induced damage to the retinal pigment epithelium (RPE) is considered to be a key factor in age-related macular degeneration (AMD) pathology. RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, lipids, nucleic acids, and cellular organelles, including mitochondria. The ubiquitin-proteasome and the lysosomal/autophagy pathways are the two major proteolytic systems to remove damaged proteins and organelles. There is increasing evidence that proteostasis is disturbed in RPE as evidenced by lysosomal lipofuscin and extracellular drusen accumulation in AMD. Nuclear factor-erythroid 2-related factor-2 (NFE2L2) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) are master transcription factors in the regulation of antioxidant enzymes, clearance systems, and biogenesis of mitochondria. The precise cause of RPE degeneration and the onset and progression of AMD are not fully understood. However, mitochondria dysfunction, increased reactive oxygen species (ROS) production, and mitochondrial DNA (mtDNA) damage are observed together with increased protein aggregation and inflammation in AMD. In contrast, functional mitochondria prevent RPE cells damage and suppress inflammation. Here, we will discuss the role of mitochondria in RPE degeneration and AMD pathology focused on mtDNA damage and repair, autophagy/mitophagy signaling, and regulation of inflammation. Mitochondria are putative therapeutic targets to prevent or treat AMD.


Assuntos
Degeneração Macular/genética , Mitocôndrias/metabolismo , Estresse Oxidativo , Epitélio Pigmentado da Retina/metabolismo , Autofagia , Humanos , Lisossomos/metabolismo , Degeneração Macular/metabolismo , Transdução de Sinais
20.
Biochimie ; 159: 49-54, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30031036

RESUMO

Retinal pigment epithelium (RPE) damage is a primary sign in the development of age-related macular degeneration (AMD) the leading cause of blindness in western countries. RPE cells are exposed to chronic oxidative stress due to constant light exposure, active fatty acid metabolism and high oxygen consumption. RPE cells phagocytosize lipid rich photoreceptor outer segment (POS) which is regulated by circadian rhytmn. Docosahexaenoic acid is present in high quantity in POS and increases oxidative stress, while its metabolites have cytoprotective effects in RPE. During RPE aging, reactive oxygen species and oxidized lipoproteins are considered to be major causes of disturbed autophagy clearance that lead to chronic innate immunity response involved in NOD-Like, Toll-Like, Advanced Glycation End product Receptors (NLRP, TLR, RAGE, respectively), pentraxins and complement systems. We discuss role of fatty acids and lipoproteins in the degeneration of RPE and development of AMD.


Assuntos
Autofagia/imunologia , Ácidos Graxos , Imunidade Inata , Lipoproteínas , Degeneração Macular , Degeneração Retiniana , Epitélio Pigmentado da Retina , Ácidos Graxos/imunologia , Ácidos Graxos/metabolismo , Humanos , Lipoproteínas/imunologia , Lipoproteínas/metabolismo , Degeneração Macular/imunologia , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Retiniana/imunologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/imunologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA