Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(4): 84, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493242

RESUMO

KEY MESSAGE: Agronomic traits were evaluated in 1250 foxtail millet accessions, and a crucial gene SiTGW6 governing grain yield was identified. Elite haplotypes and dCAPS markers developed for SiTGW6 facilitate molecular breeding. A comprehensive evaluation of phenotypic characteristics and genetic diversity in germplasm resources are important for gene discovery and breeding improvements. In this study, we conducted a comprehensive evaluation of 1250 foxtail millet varieties, assessing seven grain yield-related traits and fourteen common agronomic traits over two years. Principal component analysis, correlation analysis, and cluster analysis revealed a strong positive correlation between 1000-grain weight and grain width with grain yield, emphasizing their importance in foxtail millet breeding. Additionally, we found that panicle weight positively correlated with 1000-grain weight but negatively correlated with branch and tiller numbers, indicating selection factors during domestication and breeding. Using this information, we identified 27 germplasm resources suitable for high-yield foxtail millet breeding. Furthermore, through an integration of haplotype variations and phenotype association analysis, we pinpointed a crucial gene, SiTGW6, responsible for governing grain yield in foxtail millet. SiTGW6 encodes an IAA-glucose hydrolase, primarily localized in the cytoplasm and predominantly expressed in flowering panicles. Employing RNAseq analysis, we identified 1439 differentially expressed genes across various SiTGW6 haplotypes. Functional enrichment analysis indicating that SiTGW6 regulates grain yield through the orchestration of auxin and glucan metabolism, as well as plant hormone signaling pathways. Additionally, we have identified elite haplotypes and developed dCAPS markers for SiTGW6, providing valuable technical tools to facilitate molecular breeding efforts in foxtail millet.


Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Melhoramento Vegetal , Fenótipo , Grão Comestível/genética , Variação Genética
2.
Phytopathology ; 114(6): 1215-1225, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38281141

RESUMO

Anthracocystis destruens is the causal agent of broomcorn millet (Panicum miliaceum) smut disease, which results in serious yield losses in broomcorn millet production. However, the molecular basis underlying broomcorn millet defense against A. destruens is less understood. In this study, we investigated how broomcorn millet responds to infection by A. destruens by employing a comprehensive multi-omics approach. We examined the responses of broomcorn millet across transcriptome, metabolome, and microbiome levels. Infected leaves exhibited an upregulation of genes related to photosynthesis, accompanied by a higher accumulation of photosynthesis-related compounds and alterations in hormonal levels. However, broomcorn millet genes involved in immune response were downregulated post A. destruens infection, suggesting that A. destruens may suppress broomcorn millet immunity. In addition, we show that the immune suppression and altered host metabolism induced by A. destruens have no significant effect on the microbial community structure of broomcorn millet leaf, thus providing a new perspective for understanding the tripartite interaction between plant, pathogen, and microbiota.


Assuntos
Panicum , Doenças das Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Panicum/microbiologia , Folhas de Planta/microbiologia , Ascomicetos/fisiologia , Transcriptoma , Fotossíntese , Metaboloma , Microbiota , Regulação da Expressão Gênica de Plantas , Multiômica
3.
BMC Genomics ; 24(1): 458, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582696

RESUMO

BACKGROUND: Hull colour is an important morphological marker for selection in seed production of foxtail millet. However, the molecular mechanisms underlying hull colour variation remain unknown. RESULTS: An F7 recombinant inbred line (RIL) population containing 215 lines derived from Hongjiugu × Yugu18 was used to analyze inheritance and detect the quantitative trait loci (QTL) for four hull colour traits using major gene plus polygene mixed inheritance analysis and composite interval mapping (CIM) in four environments. Genetic analysis revealed that the hull colour L* value (HCL*) was controlled by two major genes plus additive polygenes, the hull colour a* value (HCa*) was controlled by three major genes, the hull colour b* value (HCb*) was controlled by two major genes plus polygenes, and the hull colour C* value (HCC*) was controlled by four major genes. A high-density genetic linkage map covering 1227.383 cM of the foxtail millet genome, with an average interval of 0.879 cM between adjacent bin markers, was constructed using 1420 bin markers. Based on the genetic linkage map and the phenotypic data, a total of 39 QTL were detected for these four hull colour traits across four environments, each explaining 1.50%-49.20% of the phenotypic variation. Of these, six environmentally stable major QTL were co-localized to regions on chromosomes 1 and 9, playing a major role in hull colour. There were 556 annotated genes within the two QTL regions. Based on the functions of homologous genes in Arabidopsis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) gene annotations, five genes were predicted as candidate genes for further studies. CONCLUSIONS: This is the first study to use an inheritance model and QTL mapping to determine the genetic mechanisms of hull colour trait in foxtail millet. We identified six major environmentally stable QTL and predicted five potential candidate genes to be associated with hull colour. These results advance the current understanding of the genetic mechanisms underlying hull colour traits in foxtail millet and provide additional resources for application in genomics-assisted breeding and potential isolation and functional characterization of the candidate genes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Setaria (Planta) , Locos de Características Quantitativas , Mapeamento Cromossômico/métodos , Setaria (Planta)/genética , Carcinoma Hepatocelular/genética , Cor , Neoplasias Hepáticas/genética , Melhoramento Vegetal , Estudos de Associação Genética
4.
Ecotoxicol Environ Saf ; 250: 114506, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608571

RESUMO

Cadmium (Cd) is a persistent heavy metal that poses environmental and public health concerns. This study aimed to identify the potential biomarkers responsible for Cd tolerance and accumulation by investigating the response of the content of essential metal elements, transporter gene expression, and root exudates to Cd stress in broomcorn millet (Panicum miliaceum). A hydroponics experiment was conducted using two broomcorn millet cultivars with distinct Cd tolerance levels and accumulation phenotypes (Cd-tolerant and Cd-sensitive cultivars). Cd stress inhibited lateral root growth, especially in the Cd-sensitive cultivar. Furthermore, Cd accumulation was significantly greater in the Cd-tolerant cultivar than in the Cd-sensitive cultivar. Cd stress significantly inhibited the absorption of essential metal elements and significantly increased the calcium concentration. Differentially expressed genes involved in metal ion transport were identified via transcriptome analysis. Cd stress altered the composition of root exudates, thus increasing lipid species and decreasing alkaloid, lignan, sugar, and alcohol species. Moreover, Cd stress significantly reduced most alkaloid, organic acid, and phenolic acid exudates in the Cd-tolerant cultivar, while it increased most lipid and phenolic acid exudates in the Cd-sensitive cultivar. Some significantly changed root exudates (ferulic acid, O-coumaric acid, and spermine) are involved in the phenylalanine biosynthesis, and arginine and proline metabolic pathways, thus, may be potential biomarkers of Cd stress response. Overall, metal ion absorption and root exudates are critical for Cd tolerance and accumulation in broomcorn millet. These findings provide valuable insights into improving Cd phytoremediation by applying mineral elements or metabolites.


Assuntos
Panicum , Poluentes do Solo , Cádmio/metabolismo , Panicum/metabolismo , Exsudatos e Transudatos/metabolismo , Lipídeos , Raízes de Plantas/metabolismo , Poluentes do Solo/análise
5.
J Environ Manage ; 345: 118856, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619383

RESUMO

Mulching practices have been widely adopted to improve rainfed crop productivity. However, the major resources including water, heat, and light that influenced the yield of broomcorn millet in different dryland regions have rarely been explored. A three-season field experiment with three mulching practices i.e. traditional planting with non-mulching (TP), ridge-furrow mulching system (RF), and plastic film mulching (PFM) was conducted in three semi-arid regions in the Loess Plateau, China, i.e. Guyuan city (GY), Huining county (HN), and Yulin city (YL) between 2020 and 2022 to investigate the impacts of mulching regimes on soil hydrothermal conditions, agronomic characteristics, leaf photosynthetic properties, broomcorn millet yield, and water use efficiency (WUE). Results showed that both PFM and RF treatments increased soil temperature and moisture, and enhanced dry matter accumulation by promoting leaf photosynthetic capacity and chlorophyll content, thereby improving broomcorn millet yield and WUE. PFM and RF increased the average broomcorn millet yield by 15.08% and 24.86% at GY site, 20.86% and 25.61% at HN site, and 15.75% and 25.57% at YL site, respectively, and increased the average WUE by 16.31% and 27.48% at GY site, 23.21% and 28.80% at HN site, 15.55% and 28.57% at YL site, respectively. Partial least squares path modeling analysis revealed that soil moisture was an important environmental factor in determining broomcorn millet yield. Overall, RF practice can be taken to improve the management of agricultural climate factors and maximize yield, thereby promoting the sustainable development of dryland agriculture in the Loess Plateau.


Assuntos
Panicum , Água/análise , Agricultura/métodos , Solo , China , Zea mays
6.
BMC Plant Biol ; 22(1): 160, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365087

RESUMO

BACKGROUND: Plant AT-rich sequence and zinc-binding (PLATZ) proteins belong to a novel class of plant-specific zinc-finger-dependent DNA-binding proteins that play essential roles in plant growth and development. Although the PLATZ gene family has been identified in several species, systematic identification and characterization of this gene family has not yet been carried out for Tartary buckwheat, which is an important medicinal and edible crop with high nutritional value. The recent completion of Tartary buckwheat genome sequencing has laid the foundation for this study. RESULTS: A total of 14 FtPLATZ proteins were identified in Tartary buckwheat and were classified into four phylogenetic groups. The gene structure and motif composition were similar within the same group, and evident distinctions among different groups were detected. Gene duplication, particularly segmental duplication, was the main driving force in the evolution of FtPLATZs. Synteny analysis revealed that Tartary buckwheat shares more orthologous PLATZ genes with dicotyledons, particularly soybean. In addition, the expression of FtPLATZs in different tissues and developmental stages of grains showed evident specificity and preference. FtPLATZ3 may be involved in the regulation of grain size, and FtPLATZ4 and FtPLATZ11 may participate in root development. Abundant and variable hormone-responsive cis-acting elements were distributed in the promoter regions of FtPLATZs, and almost all FtPLATZs were significantly regulated after exogenous hormone treatments, particularly methyl jasmonate treatment. Moreover, FtPLATZ6 was significantly upregulated under all exogenous hormone treatments, which may indicate that this gene plays a critical role in the hormone response of Tartary buckwheat. CONCLUSIONS: This study lays a foundation for further exploration of the function of FtPLATZ proteins and their roles in the growth and development of Tartary buckwheat and contributes to the genetic improvement of Tartary buckwheat.


Assuntos
Fagopyrum , Fagopyrum/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/metabolismo
7.
New Phytol ; 236(5): 1809-1823, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178253

RESUMO

Phytochromes play vital roles in the regulation of flowering time, but little is known in Panicoideae species, especially the C4 model Setaria. Here, genomic variations of PHYTOCHROME C (PHYC) between wild and cultivated Setaria gene pools were analysed and three SiphyC mutants were identified. The function of SiPHYC was verified by CRISPR-Cas9 approach and transcriptome sequencing. Furthermore, efficiency of indoor cultivation of SiphyC mutants were systematically evaluated. An extreme purified selection of PHYC was detected in wild to cultivated domestication process of Setaria. SiphyC mutants and knockout transgenic plants showed an early heading date and a loss of response to short-day photoperiod. Furthermore, variable expression of SiFTa, SiMADS14 and SiMADS15 might be responsible for promoting flowering of SiphyC mutants. Moreover, SiphyC mutant was four times that of the indoor plot ratio of wild-type and produced over 200 seeds within 45 d per individual. Our results suggest that domestication-associated SiPHYC repressed flowering and determined Setaria as a short-day plant, and SiphyC mutants possess the potential for creating efficient indoor cultivation system suitable for research on Setaria as a model, and either for maize or sorghum as well.


Assuntos
Fitocromo , Setaria (Planta) , Fitocromo/metabolismo , Domesticação , Setaria (Planta)/genética , Fotoperíodo , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Photosynth Res ; 151(3): 279-294, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34846599

RESUMO

Plant steroidal hormones, brassinosteroids, play a key role in various developmental processes of plants and the adaptation to various environmental stresses. The purpose of this research was to evaluate the effect of exogenous 24-epibrassinolide (EBR) application on the morphology, photosynthetic characteristics, chlorophyll fluorescence parameters, photosynthetic enzymes activities, and endogenous hormone content of mung bean (Vigna radiata L.) leaves under shading stress environment. Two mung bean cultivars, Xilv 1 and Yulv 1, were tested. The results showed that all of the investigated data were significantly affected by shading stress; however, foliar application of EBR increased the net photosynthetic rate, transpiration rate, stomatal conductance, and decreased intercellular CO2 concentration of mung bean leaves under shading condition. Increased photosynthetic capacity in EBR-treated leaves was accompanied by improvement in higher photosynthetic enzymes activities. EBR-treated leaves exhibited more quantum yield of PSII electron transport and efficiency of energy capture than the control, which was mainly due to clearer leaf anatomical structure such as palisade tissues and spongy tissues, further resulting in altered plant morphological characteristics. Moreover, the treatment with EBL regulated the endogenous hormone content, including the decreased gibberellins and increased brassinolide, although to different levels. Combined with the morphological and physiological responses, we concluded that exogenous EBR treatment is beneficial to enhancing plant tolerance to shading stress and mitigating injure from weak light. The modifications of the physiological metabolism through EBR application may be a potential strategy to weaken shading stress in the future sustainable agricultural production.


Assuntos
Fabaceae , Vigna , Brassinosteroides/farmacologia , Clorofila/metabolismo , Fabaceae/metabolismo , Fotossíntese , Folhas de Planta/fisiologia , Vigna/metabolismo
9.
Phytopathology ; 112(5): 996-1002, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34732077

RESUMO

Broomcorn millet smut caused by the fungus Anthracocystis destruens is one of the most destructive diseases in broomcorn millet production. The life cycle of A. destruens and host defense responses against A. destruens remain elusive. Here we investigated the disease symptom development and the parasitic process of A. destruens as well as the ultrastructure of the host-pathogen interface. The results showed that there are four typical symptoms of broomcorn millet smut, which are blackfly, cluster leaves, hedgehog head, and incomplete fruiting. A. destruens colonizes all tissues of broomcorn millet but produces teliospores only in the inflorescence. After infection, A. destruens proliferates in the host, likely in a systemic manner. Ultrastructural study of the infected inflorescence showed that the pathogen grows intercellularly and intracellularly within the host. The host activates defense response to prevent pathogen infection, accumulation of callose analogs and highly electron-dense deposits to resist A. destruens infection.


Assuntos
Basidiomycota , Panicum , Animais , Estágios do Ciclo de Vida , Doenças das Plantas/microbiologia
10.
Ecotoxicol Environ Saf ; 248: 114298, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403299

RESUMO

Land alkalization is an abiotic stress that affects global sustainable agricultural development and the balance of natural ecosystems. In this study, two broomcorn millet cultivars, T289 (alkaline-tolerant) and S223 (alkaline-sensitive), were selected to investigate the response of broomcorn millet to alkaline stress and the role of brassinolide (BR) in alkaline tolerance. Phenotypes, physiologies, and transcriptomes of T289 and S223 plants under only alkaline stress (AS) and alkaline stress with BR (AB) were compared. The results showed that alkaline stress inhibited growth, promoted the accumulation of soluble sugars and malondialdehyde, enhanced electrolyte leakage, and destroyed the integrity of broomcorn millet stomata. In contrast, BR lessened the negative effects of alkaline stress on plants. Transcriptome sequencing analysis showed that relative to control groups (CK, nutrient solution), in AS groups, 21,113 and 12,151 differentially expressed genes (DEGs) were identified in S223 and T289, respectively. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed various terms and pathways related to metabolism. Compared to S223, alkaline stress strongly activated the brassinosteroid biosynthesis pathway in T289. Conversely, ARF, TF, and TCH4, associated with cell growth and elongation, were inhibited by alkaline stress in S223. Moreover, alkaline stress induced the activation of the mitogen-activated protein kinase (MAPK) pathway, the abscisic acid signaling pathway that initiates stomatal closure, as well as the starch and sucrose metabolism. The EG and BGL genes, which are associated with cellulose degradation, were notably activated. BR enhanced alkaline tolerance, thereby alleviating the transcriptional responses of the two cultivars. Cultivar T289 is better in alkalized regions. Taken together, these results reveal how broomcorn millet responds to alkaline stress and BR mitigates alkaline stress, thus promoting agriculture in alkalized regions.


Assuntos
Brassinosteroides , Panicum , Transcriptoma , Ecossistema
11.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36233125

RESUMO

Foxtail millet (Setaria italica) plays an important role in C4 crop research and agricultural development in arid areas due to its short growth period, drought tolerance, and barren tolerance. Exploration of the dwarfing mechanism and the dwarf genes of foxtail millet can provide a reference for dwarf breeding and dwarf research of other C4 crops. In this study, genetic analysis was performed using phenotypic data, candidate genes were screened by bulk segregant analysis sequencing (BSA-Seq); differentially expressed genes and metabolic pathways in different strains of high samples were analyzed by RNA sequencing (RNA-Seq). The association analysis of BSA-Seq and RNA-Seq further narrowed the candidate range. As a result, a total of three quantitative trait loci (QTLs) and nine candidate genes related to plant height were obtained on chromosomes I and IX. Based on the functional prediction of the candidate genes, we propose a hypothetical mechanism for the formation of millet dwarfing, in which, metabolism and MAPK signaling play important roles in the formation of foxtail millet plant height.


Assuntos
Setaria (Planta) , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Locos de Características Quantitativas , RNA-Seq , Análise de Sequência de RNA , Setaria (Planta)/metabolismo
12.
Int J Mol Sci ; 23(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35682827

RESUMO

Broomcorn millet (Panicum miliaceum L.) has great potential in Cd phytoextraction, but its mechanisms are largely unknown. Two contrasting broomcorn millet varieties, 'Ningmi6' (Cd-sensitive variety) and '4452' (Cd-tolerant variety), were investigated through morphological, physiological, and transcriptomic analyses to determine the factors responsible for their differential Cd tolerance and translocation. The Cd-tolerant variety can accumulate more Cd, and its cell wall and vacuole component Cd proportions were higher compared with the Cd-sensitive variety. Under Cd stress, the glutathione content and peroxidase activity of the Cd-tolerant variety were significantly higher than those of the Cd-sensitive variety. Additionally, weighted gene co-expression network analysis (WGCNA) revealed hub modules that were associated with Cd stress and/or variety. Notably, genes involved in these hub modules were significantly enriched for roles in glutathione metabolism, phenylpropanoid biosynthesis, ABC transport, and metal ion transport process. These results suggested that regulation of genes associated with cell wall precipitation and vacuole compartmentalization may increase Cd tolerance and reduce Cd translocation in the Cd-tolerant variety, although it can absorb more Cd. This study provides a foundation for exploring molecular mechanisms of Cd tolerance and transport in broomcorn millet and new insights into improving Cd phytoremediation with this crop through genetic engineering.


Assuntos
Panicum , Biodegradação Ambiental , Cádmio/toxicidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glutationa/genética , Panicum/genética , Estresse Fisiológico , Transcriptoma
13.
J Environ Manage ; 305: 114362, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965501

RESUMO

Broomcorn millet (Panicum miliaceum L.), an important food crop, grows in arid and semi-arid areas that face soil saline-alkalization. To date, no studies have investigated the mechanisms by which broomcorn millet seeds respond to and tolerate alkali stress. In this study, six broomcorn millet genotypes (B102, B220, B269, B279, B289, and B297) were selected to explore the physiological and molecular mechanisms of alkali stress at the germination stage. The results showed that alkali stress delayed the germination of broomcorn millet, and α-amylase activity was positively correlated with the germination rate. After alkali stress, the genotypes with lower alkali damage rates exhibited stronger antioxidant defenses. Real-time polymerase chain reaction analysis showed that alkali stress downregulated gibberellic acid (GA) synthesis genes but upregulated GA inactivation and abscisic acid (ABA) synthesis genes. Similarly, seeds displayed lower GA concentrations and higher ABA concentrations after alkali stress. Therefore, the ratios of various GAs/ABA decreased within the range of 35.77% to approximately 96.45%. Additionally, genotypes associated with lower alkali damage rates had higher GA/ABA ratios. These findings indicate that the alkali tolerance of broomcorn millet at the germination stage may be attributed to higher GA/ABA ratios, higher α-amylase activity, and stronger antioxidant defense, which synergistically resist alkali stress. This study will contribute to molecular breeding aiming to enhance alkali-tolerance and restoration of alkaline soils.


Assuntos
Panicum , Ácido Abscísico , Biodegradação Ambiental , Germinação , Giberelinas , Panicum/genética , Sementes , Solo
14.
Ecotoxicol Environ Saf ; 224: 112669, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34419643

RESUMO

Cadmium (Cd) pollution highly threatens food security and human health, and phytoremediation with Cd-tolerant plants is a cost-effective in situ method for remediation of Cd contamination. Broomcorn millet is known for its strong abiotic stress resistance and can be used as a pioneer crop in both marginal regions and newly reclaimed land. To evaluate their potential in remediation of Cd contamination, a total of 288 broomcorn millet core collections were investigated under hydroponic conditions to compare their capabilities in Cd tolerance, translocation, and accumulation. The core collections varied considerably in their growth parameters, Cd concentration, Cd translocation factor, Cd bioaccumulation factor, and Cd accumulation under Cd stress. According to the Cd tolerance index (TI) values, 160 varieties were Cd tolerant. The Cd TI was significantly positively correlated with Cd accumulation, and the shoot Cd concentrations of five Cd-tolerant varieties were more than 100 mgkg-1, the threshold for being Cd hyperaccumulators. Moreover, the concentrations of essential metal elements were significantly decreased in shoots, and Cd concentration had a significantly positive relationship with magnesium (Mg) and zinc (Zn) concentrations in roots under Cd stress. These results demonstrate that broomcorn millet shows considerable tolerance to Cd stress and great differences in Cd accumulation abilities among varieties. Accordingly, broomcorn millet is a promising plant species for Cd bioremediation, with valuable varieties that have been identified for further study on Cd tolerance mechanisms and the remediation of Cd contamination.

15.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502461

RESUMO

Broomcorn millet (Panicum miliaceum L.) affected by smut (caused by the pathogen Sporisorium destruens) has reduced production yields and quality. Determining the tolerance of broomcorn millet varieties is essential for smut control. This study focuses on the differences in the phenotypes, physiological characteristics, and transcriptomes of resistant and susceptible broomcorn millet varieties under Sporisorium destruens stress. In diseased broomcorn millet, the plant height and stem diameter were reduced, while the number of nodes increased. After infection, the activities of superoxide dismutase and peroxidase decreased, and malondialdehyde and relative chlorophyll content (SPAD) decreased. Transcriptome analysis showed 514 and 5452 differentially expressed genes (DEGs) in the resistant and susceptible varieties, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs showed that pathways related to plant disease resistance, such as phenylpropanoid biosynthesis, plant-pathogen interaction, and plant hormone signal transduction, were significantly enriched. In addition, the transcriptome changes of cluster leaves and normal leaves in diseased broomcorn millet were analysed. Gene ontology and KEGG enrichment analyses indicated that photosynthesis played an important role in both varieties. These findings lay a foundation for future research on the molecular mechanism of the interaction between broomcorn millet and Sporisorium destruens.


Assuntos
Basidiomycota/fisiologia , Resistência à Doença , Interações Hospedeiro-Patógeno , Panicum/microbiologia , Transcriptoma , Panicum/genética , Panicum/metabolismo , Doenças das Plantas , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Transdução de Sinais , Estresse Fisiológico
16.
J Environ Manage ; 296: 113216, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34237674

RESUMO

Proso millet (Panicum miliaceum L.) is resilient to abiotic stress, especially to land degradation caused by soil salinization. However, the mechanisms by which its roots adapt and tolerate salt stress are obscure. In this study, plants of a salt-sensitive cultivar (SS 212) and a salt-tolerant cultivar (ST 47) of proso millet were exposed to severe salt stress and subsequent re-watering. ST 47 exhibited greater salt tolerance than SS 212, as evidenced by higher increases in total root length (TRL), root surface area (RSA), root tip number (RTN). Moreover, microstructural analysis showed that relative to SS 212, the roots of ST 47 could maintain more intact internal structures and thicker cell walls under salt stress. Digital RNA sequence analysis revealed that ST 47 maintained better Na+/K+ balance to resist Na+ toxicity via a higher capability to restrict Na+ uptake, vacuolar Na+ sequestration, and Na+ exclusion. The mechanism for Na+ toxicity resistance in ST 47 involved promoting cell wall composition changes via efficient regulation of galactose metabolism and biosynthesis of cellulose and phenylpropanoids. Overall, this study provides valuable salt-tolerant cultivar resources and mechanisms for regulating salt tolerance, which could be applied for the rehabilitation of saline lands.


Assuntos
Panicum , Agricultura , Sódio , Solo , Estresse Fisiológico
17.
Molecules ; 26(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299557

RESUMO

Resistant starch (RS) is widely used in the food industry because of its ability to regulate and protect the small intestine, but their distinct effects on the structural and functional properties of waxy and non-waxy proso millet starches are not completely understood. The crystalline structure and physicochemical properties of waxy and non-waxy proso millets' starch samples were analyzed after heat-moisture treatment (HMT). The analysis revealed significant differences between the RS of waxy and non-waxy proso millets. The crystal type of proso millets' starch changed from type A to type B + V. The relative crystallinity of the RS of waxy proso millet was better than that of non-waxy proso millet. The gelatinization temperature and thermal stability of RS significantly increased, and the pasting temperature (PTM) of the RS of waxy proso millet was the highest. The water solubility and swelling power of the RS in proso millet decreased, and the viscoelasticity improved. The correlation between the short-range ordered structure of RS and ΔH, and gelatinization properties has a stronger correlation. This study provides practical information for improving the nutritional benefits of waxy and non-waxy proso millet in food applications.


Assuntos
Panicum/química , Amido/química , Ceras/química , Cristalização , Manipulação de Alimentos , Alimento Funcional , Solubilidade , Temperatura , Viscosidade
18.
J Sci Food Agric ; 101(14): 6104-6116, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33908040

RESUMO

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum) is a traditional edible and medicinal crop and has been praised as one of the green foods for humans in the 21st century. However, its production and promotion are restricted by the low yields of current varieties. The interaction of genotype and environment could lead to inconsistent phenotypic performance of genotypes across different environments. Climate change has intensified these effects and poses a substantial threat to crop production. RESULTS: In the present study, the effects of meteorological factors on the phenotypic traits of 200 Tartary buckwheat landraces across four macro-environments were investigated. Overall, the phenotypic performance of these Tartary buckwheat landraces was markedly varied across the different environments. Also, the average daily temperature and precipitation had relatively higher impacts on phenotypic performance. The results also revealed the negative impacts of relative humidity on the yield-related traits. Twenty-five Tartary buckwheat landraces were ultimately identified as having good overall phenotypic performance and high yield stability. CONCLUSION: Understanding the impacts of meteorological factors on the phenotypic performance of crops can guide appropriate measures and facilitate germplasm selection for yield enhancement in the context of climate change. The landraces selected comprehensively in this study could be used as parents or intermediate materials for breeding high-quality Tartary buckwheat varieties in the future. The methods used could also be extended to other crops for breeding and germplasm innovation. © 2021 Society of Chemical Industry.


Assuntos
Fagopyrum/crescimento & desenvolvimento , Ecossistema , Meio Ambiente , Conceitos Meteorológicos , Fenótipo , Chuva/química , Temperatura
19.
Environ Res ; 184: 109261, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32087442

RESUMO

To unravel the linkages between ecological ratios (C:N:P) and the microbial community in rhizosphere soil in response to fertilizer management, soil samples were collected from a proso millet (Panicum miliaceum L.) field under different fertilizer management systems, including nitrogen fertilizer (NF), phosphorus fertilizer (PF), combined N and P (NP) fertilizer, and organic fertilizer (OF); no fertilizer (CK) was used as a control. Furthermore, 16S rRNA and ITS gene sequencing were applied to represent the bacterial and fungal diversity in the soil. Moreover, the elemental properties, including the carbon (C), nitrogen (N), and phosphorus (P) contents, in the microbial biomass and rhizosphere soil were evaluated. The results showed that the C, N, and P contents and microbial biomass (MBC, MBN and MBP, respectively) in the rhizosphere soil were augmented following fertilizer management. Increases in the alpha diversity indices (Shannon and Chao 1) of soil bacteria and fungi were observed in response to the fertilizers, and the responses were more closely related to the soil C:N and N:P ratios than to the C:P ratio. Additionally, with high relative abundances (>1%) across all soil samples, the composition of soil microbial phyla levels revealed different trends following fertilizer management. The abundances of Actinobacteria and Gemmatimonadetes increased, while the abundances of Acidobacteria and Nitrospirae decreased (P < 0.05) following fertilizer management. Among the fungal taxa, the abundances of Ascomycota and Mortierellomycota responded positively to fertilizer. These results were largely influenced by changes in the C:N and N:P ratios in both the soil and microbial biomass. Overall, significantly increased C:N and decreased N:P ratios in the soil reflected the N deficiency that would limit increased microbial biomass and diversity. Together, all of these results indicated that interactions between ecological ratios (C:N:P) and microbial community composition play vital roles in resource imbalance in dynamic environments. Thus, N status should be an important factor for sustainable agricultural management. Moreover, the synergistic effects were better with the combination of C, N, and P or with organic fertilizer than with C, N and P separately.


Assuntos
Fertilizantes , Microbiota , Microbiologia do Solo , Agricultura , Nitrogênio , Nutrientes , RNA Ribossômico 16S , Rizosfera , Solo
20.
Ecotoxicol Environ Saf ; 203: 110999, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888604

RESUMO

Aluminium (Al) is a key element that plays a major role in inhibiting plant growth and productivity under acidic soils. While lipids may be involved in plant tolerance/sensitivity to Al, the role of monogalactosyldiacylglycerol (MGDG) in Al response remains unknown. In this study, Arabidopsis MGDG synthase (AtMGD) mutants (mgd1, mgd2 and mgd3) and wild-type (Col-0) plants were treated with AlCl3; the effect of aluminium on root growth, aluminium distribution, plasma membrane integrity, lipid peroxidation, hydrogen peroxide content and membrane lipid compositions were analysed. Under Al stress, mgd mutants exhibited a more severe root growth inhibition, plasma membrane integrity damage and lipid peroxidation compared to Col-0. Al accumulation in root tips showed no difference between Col-0 and mutants under Al stress. Lipid analysis demonstrated that under Al treatment the MGDG content in all plants and MGDG/DGDG (digalactosyldiacylglycerol) remarkably reduced, especially in mutants impairing the stability and permeability of the plasma membrane. These results indicate that the Arabidopsis mgd mutants are hypersensitive to Al stress due to the reduction in MGDG content, and this is of great significance in the discovery of effective measures for plants to inhibit aluminium toxicity.


Assuntos
Alumínio/toxicidade , Arabidopsis/efeitos dos fármacos , Galactolipídeos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Alumínio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Galactolipídeos/genética , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos de Membrana/metabolismo , Mutação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA