Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(7): e2213670120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36749723

RESUMO

Autophagy supports the fast growth of established tumors and promotes tumor resistance to multiple treatments. Inhibition of autophagy is a promising strategy for tumor therapy. However, effective autophagy inhibitors suitable for clinical use are currently lacking. There is a high demand for identifying novel autophagy drug targets and potent inhibitors with drug-like properties. The transcription factor EB (TFEB) is the central transcriptional regulator of autophagy, which promotes lysosomal biogenesis and functions and systematically up-regulates autophagy. Despite extensive evidence that TFEB is a promising target for autophagy inhibition, no small molecular TFEB inhibitors were reported. Here, we show that an United States Food and Drug Administration (FDA)-approved drug Eltrombopag (EO) binds to the basic helix-loop-helix-leucine zipper domain of TFEB, specifically the bottom surface of helix-loop-helix to clash with DNA recognition, and disrupts TFEB-DNA interaction in vitro and in cellular context. EO selectively inhibits TFEB's transcriptional activity at the genomic scale according to RNA sequencing analyses, blocks autophagy in a dose-dependent manner, and increases the sensitivity of glioblastoma to temozolomide in vivo. Together, this work reveals that TFEB is targetable and presents the first direct TFEB inhibitor EO, a drug compound with great potential to benefit a wide range of cancer therapies by inhibiting autophagy.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Preparações Farmacêuticas/metabolismo , Autofagia/genética , Linhagem Celular Tumoral , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Expressão Gênica , Lisossomos/metabolismo
2.
Mol Cancer ; 23(1): 60, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520019

RESUMO

BACKGROUND: Cancer stem-like cell is a key barrier for therapeutic resistance and metastasis in various cancers, including breast cancer, yet the underlying mechanisms are still elusive. Through a genome-wide lncRNA expression profiling, we identified that LINC00115 is robustly upregulated in chemoresistant breast cancer stem-like cells (BCSCs). METHODS: LncRNA microarray assay was performed to document abundance changes of lncRNAs in paclitaxel (PTX)-resistant MDA-MB-231 BCSC (ALDH+) and non-BCSC (ALDH-). RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to determine the binding proteins of LINC00115. The clinical significance of the LINC00115 pathway was examined in TNBC metastatic lymph node tissues. The biological function of LINC00115 was investigated through gain- and loss-of-function studies. The molecular mechanism was explored through RNA sequencing, mass spectrometry, and the CRISPR/Cas9-knockout system. The therapeutic potential of LINC00115 was examined through xenograft animal models. RESULTS: LINC00115 functions as a scaffold lncRNA to link SETDB1 and PLK3, leading to enhanced SETDB1 methylation of PLK3 at both K106 and K200 in drug-resistant BCSC. PLK3 methylation decreases PLK3 phosphorylation of HIF1α and thereby increases HIF1α stability. HIF1α, in turn, upregulates ALKBH5 to reduce m6A modification of LINC00115, resulting in attenuated degradation of YTHDF2-dependent m6A-modified RNA and enhanced LINC00115 stability. Thus, this positive feedback loop provokes BCSC phenotypes and enhances chemoresistance and metastasis in triple-negative breast cancer. SETDB1 inhibitor TTD-IN with LINC00115 ASO sensitizes PTX-resistant cell response to chemotherapy in a xenograft animal model. Correlative expression of LINC00115, methylation PLK3, SETDB1, and HIF1α are prognostic for clinical triple-negative breast cancers. CONCLUSIONS: Our findings uncover LINC00115 as a critical regulator of BCSC and highlight targeting LINC00115 and SETDB1 as a potential therapeutic strategy for chemotherapeutic resistant breast cancer.


Assuntos
RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Animais , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Mama/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Paclitaxel/farmacologia , Modelos Animais de Doenças , Células-Tronco Neoplásicas/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Quinases Polo-Like , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo
3.
Hepatology ; 78(1): 88-102, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36947402

RESUMO

BACKGROUND AND AIMS: Gut microbiota are recognized to be important for anticancer therapy, yet the underlying mechanism is not clear. Here, through the analysis of clinical samples, we identify the mechanism by which the gut microbial metabolite butyrate inhibits HCC and then explore new strategies for HCC treatment. APPROACH AND RESULTS: In our study, we demonstrate that gut microbial metabolite butyrate improves anticancer therapy efficacy by regulating intracellular calcium homeostasis. Using liquid chromatography-mass spectrometry analysis, we found that butyrate metabolism is activated in HCC patients compared with healthy individuals. Butyrate levels are lower in the plasma of HCC patients by gas chromatography-mass spectrometry (GC-MS) analysis. Butyrate supplementation or depletion of short-chain Acyl-CoA dehydrogenase (SCAD) gene (ACADS), encoding a key enzyme for butyrate metabolism, significantly inhibits HCC proliferation and metastasis. The profiling analysis of genes upregulated by butyrate supplementation or ACADS knockdown reveals that calcium signaling pathway is activated, leading to dysregulation of intracellular calcium homeostasis and production of reactive oxygen species. Butyrate supplementation improves the therapy efficacy of a tyrosine kinase inhibitor sorafenib. On the basis of these findings, we developed butyrate and sorafenib coencapsulated mPEG-PLGA-PLL nanoparticles coated with anti-GPC3 antibody (BS@PEAL-GPC3) to prolong the retention time of drugs and enhance drug targeting, leading to high anticancer efficacy. BS@PEAL-GPC3 nanoparticles significantly reduce HCC progression. In addition, BS@PEAL-GPC3 nanoparticles display excellent HCC targeting with excellent safety. CONCLUSIONS: In conclusion, our findings provide new insight into the mechanism by which the gut microbial metabolites inhibit HCC progression, suggesting a translatable therapeutics approach to enhance the clinical targeted therapeutic efficacy.


Assuntos
Antineoplásicos , Butiratos , Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Sorafenibe , Butiratos/farmacologia , Cálcio/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Homeostase , Neoplasias Hepáticas/tratamento farmacológico , Sorafenibe/uso terapêutico , Antineoplásicos/uso terapêutico
4.
EMBO Rep ; 23(11): e54853, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36129789

RESUMO

Cohesin regulates sister chromatid cohesion but also contributes to chromosome folding by promoting the formation of chromatin loops, a process mediated by loop extrusion. Although PDS5 regulates cohesin dynamics on chromatin, the exact function of PDS5 in cohesin-mediated chromatin looping remains unclear. Two paralogs of PDS5 exist in vertebrates, PDS5A and PDS5B. Here we show that PDS5A and PDS5B co-localize with RAD21 and CTCF at loop anchors. Rapid PDS5A or PDS5B degradation in liver cancer cells using an inducible degron system reduces chromatin loops and increases loop size. RAD21 enrichment at loop anchors is decreased upon depletion of PDS5A or PDS5B. PDS5B loss also reduces CTCF signals at loop anchors and has a stronger effect on loop enlargement compared with PDS5A. Co-depletion of PDS5A and PDS5B reduces RAD21 levels at loop anchors although the amount of cohesin on chromatin is increased. Our study provides insight into how PDS5 proteins regulate cohesin-mediated chromatin looping.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Cromatina/genética , Mamíferos/genética , Mamíferos/metabolismo , Coesinas
5.
Br J Haematol ; 202(2): 328-343, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37144690

RESUMO

Juvenile myelomonocytic leukaemia (JMML) is an aggressive paediatric leukaemia characterized by mutations in five canonical RAS pathway genes, including the NF1 gene. JMML is driven by germline NF1 gene mutations, with additional somatic aberrations resulting in the NF1 biallelic inactivation, leading to disease progression. Germline mutations in the NF1 gene alone primarily cause benign neurofibromatosis type 1 (NF1) tumours rather than malignant JMML, yet the underlying mechanism remains unclear. Here, we demonstrate that with reduced NF1 gene dose, immune cells are promoted in anti-tumour immune response. Comparing the biological properties of JMML and NF1 patients, we found that not only JMML but also NF1 patients driven by NF1 mutations could increase monocytes generation. But monocytes cannot further malignant development in NF1 patients. Utilizing haematopoietic and macrophage differentiation from iPSCs, we revealed that NF1 mutations or knockout (KO) recapitulated the classical haematopoietic pathological features of JMML with reduced NF1 gene dose. NF1 mutations or KO promoted the proliferation and immune function of NK cells and iMacs derived from iPSCs. Moreover, NF1-mutated iNKs had a high capacity to kill NF1-KO iMacs. NF1-mutated or KO iNKs administration delayed leukaemia progression in a xenograft animal model. Our findings demonstrate that germline NF1 mutations alone cannot directly drive JMML development and suggest a potential cell immunotherapy for JMML patients.


Assuntos
Leucemia Mielomonocítica Juvenil , Neurofibromatose 1 , Animais , Humanos , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/terapia , Leucemia Mielomonocítica Juvenil/metabolismo , Neurofibromina 1/genética , Genes da Neurofibromatose 1 , Mutação em Linhagem Germinativa , Neurofibromatose 1/genética , Neurofibromatose 1/terapia , Mutação , Imunidade , Células Germinativas/metabolismo , Células Germinativas/patologia
6.
Blood ; 137(9): 1181-1191, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32898863

RESUMO

Leukemogenesis is characterized by chromosomal rearrangements with additional molecular disruptions, yet the cooperative mechanisms are still unclear. Using whole-exome sequencing of a pair of monozygotic twins who were discordant for childhood acute lymphoblastic leukemia (ALL) with ETV6-RUNX1 (E/R) gene fusion successively after birth, we identified the R209C mutation of G protein subunit α o1 (GNAO1) as a new ALL risk loci. Moreover, GNAO1 missense mutations are recurrent in ALL patients and are associated with E/R fusion. Ectopic expression of the GNAO1 R209C mutant increased its GTPase activity and promoted cell proliferation and cell neoplastic transformation. Combined with the E/R fusion, the GNAO1 R209C mutation promoted leukemogenesis through activating PI3K/Akt/mTOR signaling. Reciprocally, activated mTORC1 phosphorylated p300 acetyltransferase, which acetylated E/R and thereby enhanced the E/R transcriptional activity of GNAO1 R209C. Thus, our study provides clinical evidence of the functional cooperation of GNAO1 mutations and E/R fusion, suggesting GNAO1 as a therapeutic target in human leukemia.


Assuntos
Carcinogênese/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animais , Linhagem Celular Tumoral , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Modelos Moleculares , Mutação , Mutação de Sentido Incorreto , Proteínas de Fusão Oncogênica/genética , Mutação Puntual
7.
EMBO Rep ; 20(12): e48170, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31599491

RESUMO

Long non-coding RNAs (lncRNAs) are critical regulators in cancer. However, the involvement of lncRNAs in TGF-ß-regulated tumorigenicity is still unclear. Here, we identify TGF-ß-activated lncRNA LINC00115 as a critical regulator of glioma stem-like cell (GSC) self-renewal and tumorigenicity. LINC00115 is upregulated by TGF-ß, acts as a miRNA sponge, and upregulates ZEB1 by competitively binding of miR-200s, thereby enhancing ZEB1 signaling and GSC self-renewal. LINC00115 also promotes ZNF596 transcription by preventing binding of miR-200s to the 5'-UTR of ZNF596, resulting in augmented ZNF596/EZH2/STAT3 signaling and GBM tumor growth. Inhibition of EZH2 by genetic approaches or a small molecular inhibitor markedly suppresses LINC00115-driven GSC self-renewal and tumorigenicity. Moreover, LINC00115 is highly expressed in GBM, and LINC00115 expression or correlated co-expression with ZEB1 or ZNF596 is prognostic for clinical GBM survival. Our work defines a critical role of LINC00115 in GSC self-renewal and tumorigenicity, and suggests LINC00115 as a potential target for GBM treatment.


Assuntos
Neoplasias Encefálicas/metabolismo , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Glioma/genética , Glioma/patologia , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/farmacologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
8.
Plant Cell ; 25(10): 3841-57, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24163315

RESUMO

The phytohormone cytokinin regulates various aspects of plant growth and development, including root vascular development. In Arabidopsis thaliana, mutations in the cytokinin signaling components cause misspecification of protoxylem cell files. Auxin antagonizes cytokinin-regulated root protoxylem differentiation by inducing expression of Arabidopsis phosphotransfer protein6 (AHP6), a negative regulator of cytokinin signaling. However, the molecular mechanism of cytokinin-regulated protoxylem differentiation is not fully understood. Here, we show that a mutation in Arabidopsis fumonisin B1-resistant12 (FBR12), which encodes a eukaryotic translation initiation factor 5A, causes defective protoxylem development and reduced sensitivity to cytokinin. FBR12 genetically interacts with the cytokinin receptor cytokinin response1 (CRE1) and downstream AHP genes, as double mutants show enhanced phenotypes. FBR12 forms a protein complex with CRE1 and AHP1, and cytokinin regulates formation of this protein complex. Intriguingly, ahp6 partially suppresses the fbr12 mutant phenotype, and the fbr12 mutation causes increased expression of AHP6, indicating that FBR12 negatively regulates AHP6. Consistent with this, ectopic expression of FBR12 in the CRE1-expressing domain partially rescues defective protoxylem development in fbr12, and overexpression of AHP6 causes an fbr12-like phenotype. These results define a regulatory role of the highly conserved FBR12 in cytokinin-mediated root protoxylem specification.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Citocininas/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Mutação , Fatores de Iniciação de Peptídeos/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Xilema/crescimento & desenvolvimento , Fator de Iniciação de Tradução Eucariótico 5A
9.
Proc Natl Acad Sci U S A ; 109(8): 3018-23, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22323579

RESUMO

Glioblastoma, the most common primary malignant cancer of the brain, is characterized by rapid tumor growth and infiltration of tumor cells throughout the brain. These traits cause glioblastomas to be highly resistant to current therapies with a resultant poor prognosis. Although aberrant oncogenic signaling driven by signature genetic alterations, such as EGF receptor (EGFR) gene amplification and mutation, plays a major role in glioblastoma pathogenesis, the responsible downstream mechanisms remain less clear. Here, we report that EGFRvIII (also known as ΔEGFR and de2-7EGFR), a constitutively active EGFR mutant that is frequently co-overexpressed with EGFR in human glioblastoma, promotes tumorigenesis through Src family kinase (SFK)-dependent phosphorylation of Dock180, a guanine nucleotide exchange factor for Rac1. EGFRvIII induces phosphorylation of Dock180 at tyrosine residue 722 (Dock180(Y722)) and stimulates Rac1-signaling, glioblastoma cell survival and migration. Consistent with this being causal, siRNA knockdown of Dock180 or expression of a Dock180(Y722F) mutant inhibits each of these EGFRvIII-stimulated activities. The SFKs, Src, Fyn, and Lyn, induce phosphorylation of Dock180(Y722) and inhibition of these SFKs by pharmacological inhibitors or shRNA depletion markedly attenuates EGFRvIII-induced phosphorylation of Dock180(Y722), Rac1 activity, and glioblastoma cell migration. Finally, phosphorylated Dock180(Y722) is coexpressed with EGFRvIII and phosphorylated Src(Y418) in clinical specimens, and such coexpression correlates with an extremely poor survival in glioblastoma patients. These results suggest that targeting the SFK-p-Dock180(Y722)-Rac1 signaling pathway may offer a novel therapeutic strategy for glioblastomas with EGFRvIII overexpression.


Assuntos
Transformação Celular Neoplásica/patologia , Receptores ErbB/metabolismo , Glioblastoma/enzimologia , Glioblastoma/patologia , Fosfotirosina/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Humanos , Dados de Sequência Molecular , Fosforilação , Prognóstico , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas rac de Ligação ao GTP/química , Proteínas rac1 de Ligação ao GTP/metabolismo
10.
J Exp Clin Cancer Res ; 43(1): 141, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745192

RESUMO

BACKGROUND: Neuroblastoma (NB) patients with amplified MYCN often face a grim prognosis and are resistant to existing therapies, yet MYCN protein is considered undruggable. KAP1 (also named TRIM28) plays a crucial role in multiple biological activities. This study aimed to investigate the relationship between KAP1 and MYCN in NB. METHODS: Transcriptome analyses and luciferase reporter assay identified that KAP1 was a downstream target of MYCN. The effects of KAP1 on cancer cell proliferation and colony formation were explored using the loss-of-function assays in vitro and in vivo. RNA stability detection was used to examine the influence of KAP1 on MYCN expression. The mechanisms of KAP1 to maintain MYCN mRNA stabilization were mainly investigated by mass spectrum, immunoprecipitation, RIP-qPCR, and western blotting. In addition, a xenograft mouse model was used to reveal the antitumor effect of STM2457 on NB. RESULTS: Here we identified KAP1 as a critical regulator of MYCN mRNA stability by protecting the RNA N6-methyladenosine (m6A) reader YTHDC1 protein degradation. KAP1 was highly expressed in clinical MYCN-amplified NB and was upregulated by MYCN. Reciprocally, KAP1 knockdown reduced MYCN mRNA stability and inhibited MYCN-amplified NB progression. Mechanistically, KAP1 regulated the stability of MYCN mRNA in an m6A-dependent manner. KAP1 formed a complex with YTHDC1 and RNA m6A writer METTL3 to regulate m6A-modified MYCN mRNA stability. KAP1 depletion decreased YTHDC1 protein stability and promoted MYCN mRNA degradation. Inhibiting MYCN mRNA m6A modification synergized with chemotherapy to restrain tumor progression in MYCN-amplified NB. CONCLUSIONS: Our research demonstrates that KAP1, transcriptionally activated by MYCN, forms a complex with YTHDC1 and METTL3, which in turn maintain the stabilization of MYCN mRNA in an m6A-dependent manner. Targeting m6A modification by STM2457, a small-molecule inhibitor of METTL3, could downregulate MYCN expression and attenuate tumor proliferation. This finding provides a new alternative putative therapeutic strategy for MYCN-amplified NB.


Assuntos
Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Proteína 28 com Motivo Tripartido , Animais , Humanos , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Proteína 28 com Motivo Tripartido/genética
11.
J Hematol Oncol ; 17(1): 83, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267119

RESUMO

BACKGROUND: Macrophage-based cell therapy is promising in solid tumors, but the efficient acquisition of macrophages remains a challenge. Induced pluripotent stem cell (iPSC)-induced macrophages are a valuable source, but time-consuming and costly. The application of reprogramming technologies allows for the generation of macrophages from somatic cells, thereby facilitating the advancement of cell-based therapies for numerous malignant diseases. METHODS: The composition of CD45+ myeloid-like cell complex (MCC) and induced macrophage (iMac) were analyzed by flow cytometry and single-cell RNA sequencing. The engraftment capacity of CD45+ MCC was evaluated by two transplantation assays. Regulation of c-Myc on MafB was evaluated by ChIP-qPCR and promoter reporter and dual luciferase assays. The phenotype and phagocytosis of iMac were explored by flow cytometry and immunofluorescence. Leukemia, breast cancer, and patient-derived tumor xenograft models were used to explore the anti-tumor function of iMac. RESULTS: Here we report on the establishment of a novel methodology allowing for reprogramming fibroblasts into functional macrophages with phagocytic activity by c-Myc overexpression. Fibroblasts with ectopic expression of c-Myc in iPSC medium rapidly generated CD45+ MCC intermediates with engraftment capacity as well as the repopulation of distinct hematopoietic compartments. MCC intermediates were stably maintained in iPSC medium and continuously generated functional and highly pure iMac just by M-CSF cytokine stimulation. Single-cell transcriptomic analysis of MCC intermediates revealed that c-Myc up-regulated the expression of MafB, a major regulator of macrophage differentiation, to promote macrophage differentiation. Characterization of the iMac activity showed NF-κB signaling activation and a pro-inflammatory phenotype. iMac cells displayed significantly increased in vivo persistence and inhibition of tumor progression in leukemia, breast cancer, and patient-derived tumor xenograft models. CONCLUSIONS: Our findings demonstrate that c-Myc alone is enough to reprogram fibroblasts into functional macrophages, supporting that c-Myc reprogramming strategy of fibroblasts can help circumvent long-standing obstacles to gaining "off-the-shelf" macrophages for anti-cancer immunotherapy.


Assuntos
Reprogramação Celular , Fibroblastos , Macrófagos , Proteínas Proto-Oncogênicas c-myc , Macrófagos/metabolismo , Macrófagos/citologia , Animais , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Fibroblastos/metabolismo , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Feminino
12.
Mol Ther Nucleic Acids ; 35(4): 102323, 2024 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-39310881

RESUMO

[This retracts the article DOI: 10.1016/j.omtn.2021.11.012.].

13.
Cell Oncol (Dordr) ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162990

RESUMO

PURPOSE: Ovarian metastasis of gastric cancer (GC), commonly referred to as Krukenberg tumors, leads to a poor prognosis. However, the cause of metastasis remains unknown. Here, we present an integrated single-cell RNA sequencing (scRNA-Seq) analysis of the immunological microenvironment of two paired clinical specimens with ovarian metastasis of GC. METHODS: scRNA-Seq was performed to determine the immunological microenvironment in ovarian metastasis of gastric cancer. CellChat was employed to analyze cell-cell communications across different cell types. Functional enrichment analysis was done by enrichKEGG in clusterProfiler. GEPIA2 was used to assess the influence of certain genes and gene signatures on prognosis. RESULTS: The ovarian metastasis tissues exhibit a heterogenous immunological microenvironment compared to the primary tumors. Exhaustion of T and B cells is observed in the ovarian metastasis tissues. Compared to the paired adjacent non-tumoral and primary tumors, the ratio of endothelial cells and fibroblasts is high in the ovarian metastasis tissues. Compared to primary ovarian cancers, we identify a specific group of tumor-associated fibroblasts with MFAP4 and CAPNS1 expression in the ovarian metastatic tissues of GC. We further define metastasis-related-endothelial and metastasis-related-fibroblast signatures and indicate that patients with these high signature scores have a poor prognosis. In addition, the ovarian metastasis tissue has a lower level of intercellular communications compared to the primary tumor. CONCLUSION: Our findings reveal the immunological microenvironment of ovarian metastasis of gastric cancer and will promote the discovery of new therapeutic strategies for ovarian metastasis in gastric cancer.

14.
Adv Sci (Weinh) ; 11(29): e2400023, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38828688

RESUMO

The factors driving glioma progression remain poorly understood. Here, the epigenetic regulator TRIM24 is identified as a driver of glioma progression, where TRIM24 overexpression promotes HRasV12 anaplastic astrocytoma (AA) progression into epithelioid GBM (Ep-GBM)-like tumors. Co-transfection of TRIM24 with HRasV12 also induces Ep-GBM-like transformation of human neural stem cells (hNSCs) with tumor protein p53 gene (TP53) knockdown. Furthermore, TRIM24 is highly expressed in clinical Ep-GBM specimens. Using single-cell RNA-sequencing (scRNA-Seq), the authors show that TRIM24 overexpression impacts both intratumoral heterogeneity and the tumor microenvironment. Mechanically, HRasV12 activates phosphorylated adaptor for RNA export (PHAX) and upregulates U3 small nucleolar RNAs (U3 snoRNAs) to recruit Ku-dependent DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Overexpressed TRIM24 is also recruited by PHAX to U3 snoRNAs, thereby facilitating DNA-PKcs phosphorylation of TRIM24 at S767/768 residues. Phosphorylated TRIM24 induces epigenome and transcription factor network reprogramming and promotes Ep-GBM-like transformation. Targeting DNA-PKcs with the small molecule inhibitor NU7441 synergizes with temozolomide to reduce Ep-GBM tumorigenicity and prolong animal survival. These findings provide new insights into the epigenetic regulation of Ep-GBM-like transformation and suggest a potential therapeutic strategy for patients with Ep-GBM.


Assuntos
Progressão da Doença , Glioma , Mutação , RNA Nucleolar Pequeno , Animais , Humanos , Camundongos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas de Transporte , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas ras/metabolismo , Proteínas ras/genética , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo
15.
Cell Oncol (Dordr) ; 46(6): 1763-1775, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37466744

RESUMO

PURPOSE: High-risk neuroblastoma (NB) still has an unfavorable prognosis and inducing NB differentiation is a potential strategy in clinical treatment, yet underlying mechanisms are still elusive. Here we identify TRIM24 as an important regulator of NB differentiation. METHODS: Multiple datasets and clinical specimens were analyzed to define the role of TRIM24 in NB. The effects of TRIM24 on differentiation and growth of NB were determined by cell morphology, spheres formation, soft agar assay, and subcutaneous xenograft in nude mice. RNA-Seq and qRT-PCR were used to identify genes and pathways involved. Mass spectrometry and co-immunoprecipitation were used to explore the interaction of proteins. RESULTS: Trim24 is highly expressed in spontaneous NB in TH-MYCN transgenic mice and clinical NB specimens. It is associated with poor NB differentiation and unfavorable prognostic. Knockout of TRIM24 in neuroblastoma cells promotes cell differentiation, reduces cell stemness, and inhibits colony formation in soft agar and subcutaneous xenograft tumor growth in nude mice. Mechanistically, TRIM24 knockout alters genes and pathways related to neural differentiation and development by suppressing LSD1/CoREST complex formation. Besides, TRIM24 knockout activates the retinoic acid pathway. Targeting TRIM24 in combination with retinoic acid (RA) synergistically promotes NB cell differentiation and inhibits cell viability. CONCLUSION: Our findings demonstrate that TRIM24 is critical for NB differentiation and suggest that TRIM24 is a promising therapeutic target in combination with RA in NB differentiation therapy.


Assuntos
Neuroblastoma , Camundongos , Animais , Humanos , Camundongos Nus , Ágar , Linhagem Celular Tumoral , Camundongos Knockout , Diferenciação Celular , Neuroblastoma/genética , Neuroblastoma/patologia , Tretinoína/metabolismo , Tretinoína/farmacologia , Camundongos Transgênicos , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Transporte/metabolismo
16.
Blood Sci ; 5(1): 39-50, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36742181

RESUMO

Tumor relapse is the major cause of treatment failure in childhood acute lymphoblastic leukemia (ALL), yet the underlying mechanisms are still elusive. Here, we demonstrate that phosphoribosyl pyrophosphate synthetase 2 (PRPS2) mutations drive ALL relapse through influencing PRPS1/2 hexamer stability. Ultra-deep sequencing was performed to identify PRPS2 mutations in ALL samples. The effects of PRPS2 mutations on cell survival, cell apoptosis, and drug resistance were evaluated. In vitro PRPS2 enzyme activity and ADP/GDP feedback inhibition of PRPS enzyme activity were assessed. Purine metabolites were analyzed by ultra-performance liquid-chromatography tandem mass spectrometry (UPLC-MS/MS). Integrating sequencing data with clinical information, we identified PRPS2 mutations only in relapsed childhood ALL with thiopurine therapy. Functional PRPS2 mutations mediated purine metabolism specifically on thiopurine treatment by influencing PRPS1/2 hexamer stability, leading to reduced nucleotide feedback inhibition of PRPS activity and enhanced thiopurine resistance. The 3-amino acid V103-G104-E105, the key difference between PRPS1 and PRPS2, insertion in PRPS2 caused severe steric clash to the interface of PRPS hexamer, leading to its low enzyme activity. In addition, we demonstrated that PRPS2 P173R increased thiopurine resistance in xenograft models. Our work describes a novel mechanism by which PRPS2 mutants drive childhood ALL relapse and highlights PRPS2 mutations as biomarkers for relapsed childhood ALL.

17.
Cell Oncol (Dordr) ; 46(1): 133-143, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36520365

RESUMO

PURPOSE: Neuroblastoma arises from developmental block of embryonic neural crest cells and is one of the most common and deadly pediatric tumors. However, the mechanism underlying this block is still unclear. Here, we show that targeting Rho guanine nucleotide exchange factor 12 (ARHGEF12, also named LARG) promotes MYCN degradation and neuroblastoma differentiation, leading to reduced neuroblastoma malignancy. METHODS: The neuroblastoma TARGET dataset was downloaded to assess ARHGEF12 expression. Cell differentiation, proliferation, colony formation and cell migration analyses were performed to investigate the effects of ARHGEF12 knockdown on neuroblastoma cells. Western blotting and immunohistochemistry were employed to determine protein expression. Animal xenograft models were used to investigate antitumor effects after ARHGEF12 knockdown or treatment with the ARHGEF12 inhibitor Y16 in vivo. RESULTS: We found that the expression level of ARHGEF12 was higher in neuroblastoma than in better-differentiated ganglioneuroblastoma. Knockdown of ARHGEF12 promoted neuroblastoma differentiation, decreased stemness-related gene expression, and increased differentiation-related gene expression. ARHGEF12 knockdown reduced tumor growth, and the resulting tumors showed bigger tumor cells compared to those in control neuroblastoma xenografts. In addition, it was found that ARHGEF12 knockdown promoted MYCN ubiquitination and degradation in MYCN-amplified tumors through RhoA/ROCK/GSK3ß signaling. Targeting ARHGEF12 with the small molecular inhibitor Y16 induced cell differentiation and attenuated neuroblastoma tumorigenicity. CONCLUSION: Our findings provide new insight into the mechanism by which ARHGEF12 regulates neuroblastoma tumorigenicity and suggest a translatable therapeutic approach by targeting ARHGEF12 with a small molecular inhibitor.


Assuntos
Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Fatores de Troca de Nucleotídeo Guanina Rho , Animais , Humanos , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Transdução de Sinais , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
18.
Mol Ther Nucleic Acids ; 27: 109-121, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34938610

RESUMO

LncRNA PVT1 has been implicated in numerous pathophysiological processes and diseases, especially cancers. However, the role and mechanism of PVT1 in the tumorigenesis of glioblastoma remain unclear. We investigated the alteration of PVT1 and its key functions in glioblastoma. PVT1 was upregulated and associated with poor prognosis in glioblastoma. We demonstrated that PVT1 silencing suppressed cell proliferation, colony formation, and orthotopic xenograft tumor growth. Mechanistic investigations found that PVT1 interacted with TRIM24 directly and increased its protein stability. PVT1 recruited COPS5 to deubiquitinate TRIM24; reciprocally, PVT1 depletion impaired the interaction between COPS5 and TRIM24, resulting in decreased expression of TRIM24. PVT1, TRIM24, and COPS5 coordinately contributed to the activation of STAT3 signaling and malignant phenotype of glioblastoma. Collectively, this study elucidates the essential role of PVT1 in the tumorigenesis of glioblastoma, which provides candidacy therapeutic target for glioblastoma treatment.

19.
Stem Cells Int ; 2022: 6593403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283995

RESUMO

Macrophage is a very promising cell type for cancer immunotherapy, yet it is difficult to obtain enough functional macrophages for clinical cell therapy. Herein, we descibe a reliable method to produce functional macrophages through the differentiation of human induced pluripotent stem cells (hiPSCs). By optimizing the size control of embryoid bodies (EBs), we accelerated the differentiation process of macrophages and increased the production of macrophages without attenuating macrophage functions. Our final yield of macrophages was close to 50-fold of starting iPSCs. The macrophages showed phagocytic capacity in vitro and a xenograft tumor model. M0 macrophages could be further polarized into M1 and M2 subtypes, and M1 cells exhibited typical proinflammatory characteristics. Moreover, we found that hematopoietic differentiation originated from the outside of EB and matured inward gradually. Taken together, our protocol provides an effective method for the generation of macrophages comparable to blood-derived macrophages, which provides potential value for cell therapy and gene editing studies.

20.
Signal Transduct Target Ther ; 6(1): 129, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33785736

RESUMO

Maintenance of genetic stability via proper DNA repair in stem and progenitor cells is essential for the tissue repair and regeneration, while preventing cell transformation after damage. Loss of PUMA dramatically increases the survival of mice after exposure to a lethal dose of ionizing radiation (IR), while without promoting tumorigenesis in the long-term survivors. This finding suggests that PUMA (p53 upregulated modulator of apoptosis) may have a function other than regulates apoptosis. Here, we identify a novel role of PUMA in regulation of DNA repair in embryonic or induced pluripotent stem cells (PSCs) and immortalized hematopoietic progenitor cells (HPCs) after IR. We found that PUMA-deficient PSCs and HPCs exhibited a significant higher double-strand break (DSB) DNA repair activity via Rad51-mediated homologous recombination (HR). This is because PUMA can be associated with early mitotic inhibitor 1 (EMI1) and Rad51 in the cytoplasm to facilitate EMI1-mediated cytoplasmic Rad51 ubiquitination and degradation, thereby inhibiting Rad51 nuclear translocation and HR DNA repair. Our data demonstrate that PUMA acts as a repressor for DSB DNA repair and thus offers a new rationale for therapeutic targeting of PUMA in regenerative cells in the context of DNA damage.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Células-Tronco Embrionárias/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas/genética , Rad51 Recombinase/genética , Proteínas Supressoras de Tumor/genética , Animais , Carcinogênese/efeitos da radiação , Linhagem Celular Tumoral , Citoplasma/genética , Citoplasma/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Células-Tronco Embrionárias/patologia , Células-Tronco Embrionárias/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Células-Tronco Hematopoéticas/patologia , Células-Tronco Hematopoéticas/efeitos da radiação , Camundongos , Radiação Ionizante , Reparo de DNA por Recombinação/efeitos da radiação , Regeneração/genética , Ubiquitinação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA