Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
PLoS Genet ; 19(7): e1010867, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37523410

RESUMO

Many filamentous fungi produce plant-polysaccharide-degrading enzymes (PPDE); however, the regulatory mechanism of this process is poorly understood. A Gal4-like transcription factor, CxrA, is essential for mycelial growth and PPDE production in Penicillium oxalicum. Its N-terminal region, CxrAΔ207-733 is required for the regulatory functions of whole CxrA, and contains a DNA-binding domain (CxrAΔ1-16&Δ59-733) and a methylated arginine (R) 94. Methylation of R94 is mediated by an arginine N-methyltransferase, PRMT2 and appears to induce dimerization of CxrAΔ1-60. Overexpression of prmt2 in P. oxalicum increases PPDE production by 41.4-95.1% during growth on Avicel, compared with the background strain Δku70;hphR+. Another arginine N-methyltransferase, PRMT3, appears to assist entry of CxrA into the nucleus, and interacts with CxrAΔ1-60 in vitro under Avicel induction. Deletion of prmt3 resulted in 67.0-149.7% enhanced PPDE production by P. oxalicum. These findings provide novel insights into the regulatory mechanism of fungal PPDE production.


Assuntos
Penicillium , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/genética , Penicillium/genética , Celulose , Arginina
2.
Appl Environ Microbiol ; : e0039024, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023351

RESUMO

Filamentous fungi can produce raw-starch-degrading enzyme, however, regulation of production of raw-starch-degrading enzyme remains poorly understood thus far. Here, two novel transcription factors raw-starch-degrading enzyme regulator D (RsrD) and raw-starch-degrading enzyme regulator E (RsrE) were identified to participate in the production of raw-starch-degrading enzyme in Penicillium oxalicum. Individual knockout of rsrD and rsrE in the parental strain Δku70 resulted in 31.1%-92.9% reduced activity of raw-starch-degrading enzyme when cultivated in the presence of commercial starch from corn. RsrD and RsrE contained a basic leucine zipper and a Zn2Cys6-type DNA-binding domain, respectively, but with unknown functions. RsrD and RsrE dynamically regulated the expression of genes encoding major amylases over time, including raw-starch-degrading glucoamylase gene PoxGA15A and α-amylase gene amy13A. Interestingly, RsrD and RsrE regulated each other at transcriptional level, through binding to their own promoter regions; nevertheless, both failed to bind to the promoter regions of PoxGA15A and amy13A, as well as the known regulatory genes for regulation of amylase gene expression. RsrD appears to play an epistatic role in the module RsrD-RsrE on regulation of amylase gene expression. This study reveals a novel regulatory pathway of fungal production of raw-starch-degrading enzyme.IMPORTANCETo survive via combating with complex extracellular environment, filamentous fungi can secrete plant polysaccharide-degrading enzymes that can efficiently hydrolyze plant polysaccharide into glucose or other mono- and disaccharides, for their nutrients. Among the plant polysaccharide-degrading enzymes, raw-starch-degrading enzymes directly degrade and convert hetero-polymeric starch into glucose and oligosaccharides below starch gelatinization temperature, which can be applied in industrial biorefinery to save cost. However, the regulatory mechanism of production of raw-starch-degrading enzyme in fungi remains unknown thus far. Here, we showed that two novel transcription factors raw-starch-degrading enzyme regulator D (RsrD) and raw-starch-degrading enzyme regulator E (RsrE) positively regulate the production of raw-starch-degrading enzyme by Penicillium oxalicum. RsrD and RsrE indirectly control the expression of genes encoding enzymes with amylase activity but directly regulate each other at transcriptional level. These findings expand diversity of gene expression regulation in fungi.

3.
Appl Microbiol Biotechnol ; 108(1): 16, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38170318

RESUMO

Penicillium fungi, including Penicillium oxalicum, can secrete a range of efficient plant-polysaccharide-degrading enzymes (PPDEs) that is very useful for sustainable bioproduction, using renewable plant biomass as feedstock. However, the low efficiency and high cost of PPDE production seriously hamper the industrialization of processes based on PPDEs. In Penicillium, the expression of PPDE genes is strictly regulated by a complex regulatory system and molecular breeding to modify this system is a promising way to improve fungal PPDE yields. In this mini-review, we present an update on recent research progress concerning PPDE distribution and function, the regulatory mechanism of PPDE biosynthesis, and molecular breeding to produce PPDE-hyperproducing Penicillium strains. This review will facilitate future development of fungal PPDE production through metabolic engineering and synthetic biology, thereby promoting PPDE industrial biorefinery applications. KEY POINTS: • This mini review summarizes PPDE distribution and function in Penicillium. • It updates progress on the regulatory mechanism of PPDE biosynthesis in Penicillium. • It updates progress on breeding of PPDE-hyperproducing Penicillium strains.


Assuntos
Penicillium , Polissacarídeos/metabolismo
4.
Appl Environ Microbiol ; 89(6): e0036023, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37191516

RESUMO

Penicillium oxalicum produces an integrated, extracellular cellulase and xylanase system, strictly regulated by several transcription factors. However, the understanding of the regulatory mechanism of cellulase and xylanase biosynthesis in P. oxalicum is limited, particularly under solid-state fermentation (SSF) conditions. In our study, deletion of a novel gene, cxrD (cellulolytic and xylanolytic regulator D), resulted in 49.3 to 2,230% enhanced production of cellulase and xylanase, except for 75.0% less xylanase at 2 days, compared with the P. oxalicum parental strain, when cultured on solid medium containing wheat bran plus rice straw for 2 to 4 days after transfer from glucose. In addition, the deletion of cxrD delayed conidiospore formation, leading to 45.1 to 81.8% reduced asexual spore production and altered mycelial accumulation to various extents. Comparative transcriptomics and real-time quantitative reverse transcription-PCR found that CXRD dynamically regulated the expression of major cellulase and xylanase genes and conidiation-regulatory gene brlA under SSF. In vitro electrophoretic mobility shift assays demonstrated that CXRD bound to the promoter regions of these genes. The core DNA sequence 5'-CYGTSW-3' was identified to be specifically bound by CXRD. These findings will contribute to understanding the molecular mechanism of negative regulation of fungal cellulase and xylanase biosynthesis under SSF. IMPORTANCE Application of plant cell wall-degrading enzymes (CWDEs) as catalysts in biorefining of lignocellulosic biomass into bioproducts and biofuels reduces both chemical waste production and carbon footprint. The filamentous fungus Penicillium oxalicum can secrete integrated CWDEs, with potential for industrial application. Solid-state fermentation (SSF), simulating the natural habitat of soil fungi, such as P. oxalicum, is used for CWDE production, but a limited understanding of CWDE biosynthesis hampers the improvement of CWDE yields through synthetic biology. Here, we identified a novel transcription factor CXRD, which negatively regulates the biosynthesis of cellulase and xylanase in P. oxalicum under SSF, providing a potential target for genetic engineering to improve CWDE production.


Assuntos
Celulase , Penicillium , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fermentação , Celulase/genética , Celulase/metabolismo , Regulação Fúngica da Expressão Gênica , Penicillium/metabolismo
5.
Crit Rev Biotechnol ; : 1-21, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38035670

RESUMO

Cellulases and xylanases are plant cell wall-degrading enzymes (CWDEs) that are critical to sustainable bioproduction based on renewable lignocellulosic biomass to reduce carbon dioxide emission. Currently, these enzymes are mainly produced from filamentous fungi, especially Trichoderma reesei and Penicillium oxalicum. However, an in-depth comparison of these two producers has not been performed. Although both P. oxalicum and T. reesei harbor CWDE systems, they exhibit distinct features regulating the production of these enzymes, mainly through different transcriptional regulatory networks. This review presents the strikingly different modes of genome-wide regulation of cellulase and xylanase biosynthesis in P. oxalicum and T. reesei, including sugar transporters, signal transduction cascades, transcription factors, chromatin remodeling, and three-dimensional organization of chromosomes. In addition, different molecular breeding approaches employed, based on the understanding of the regulatory networks, are summarized. This review highlights the existence of very different regulatory modes leading to the efficient regulation of CWDE production in filamentous fungi, akin to the adage that "every road leads to Rome." An understanding of this divergence may help further improvements in fungal enzyme production through the metabolic engineering and synthetic biology of certain fungal species.

6.
Appl Microbiol Biotechnol ; 107(11): 3605-3620, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119203

RESUMO

The filamentous fungus Penicillium oxalicum secretes integrative plant polysaccharide-degrading enzymes (PPDEs) applicable to biotechnology. Glycogen synthase kinase-3ß (GSK-3ß) mediates various cellular processes in eukaryotic cells, but the regulatory mechanisms of PPDE biosynthesis in filamentous fungi remain poorly understood. In this study, POGSK-3ß (POX_c04478), a homolog of GSK-3ß in P. oxalicum, was characterised using biochemical, microbiological and omics approaches. Knockdown of POGSK-3ß in P. oxalicum using a copper-responsive promoter replacement system led to 53.5 - 63.6%, 79.0 - 92.8% and 76.8 - 94.7% decreases in the production of filter paper cellulase, soluble starch-degrading enzyme and raw starch-degrading enzyme, respectively, compared with the parental strain ΔKu70. POGSK-3ß promoted mycelial growth and conidiation. Transcriptomic profiling and real-time quantitative reverse transcription PCR analyses revealed that POGSK-3ß dynamically regulated the expression of genes encoding major PPDEs, as well as fungal development-associated genes. The results broadened our understanding of the regulatory functions of GKS-3ß and provided a promising target for genetic engineering to improve PPDE production in filamentous fungi. KEY POINTS: • The roles of glycogen synthase kinase-3ß were investigated in P. oxalicum. • POGSK-3ß regulated PPDE production, mycelial growth and conidiation. • POGSK-3ß controlled the expression of major PPDE genes and regulatory genes.


Assuntos
Polissacarídeos Fúngicos , Penicillium , Glicogênio Sintase Quinase 3 beta/metabolismo , Polissacarídeos Fúngicos/metabolismo , Penicillium/metabolismo , Fungos , Amido/metabolismo
7.
Mol Microbiol ; 116(1): 140-153, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33561892

RESUMO

The essential transcription factor PoxCxrA is required for cellulase and xylanase gene expression in the filamentous fungus Penicillium oxalicum that is potentially applied in biotechnological industry as a result of the existence of the integrated cellulolytic and xylolytic system. However, the regulatory mechanism of cellulase and xylanase gene expression specifically associated with PoxCxrA regulation in fungi is poorly understood. In this study, the novel regulator PoxCbh (POX06865), containing a centromere protein B-type helix-turn-helix domain, was identified through screening for the PoxCxrA regulon under Avicel induction and genetic analysis. The mutant ∆PoxCbh showed significant reduction in cellulase and xylanase production, ranging from 28.4% to 59.8%. Furthermore, PoxCbh was found to directly regulate the expression of important cellulase and xylanase genes, as well as the known regulatory genes PoxNsdD and POX02484, and its expression was directly controlled by PoxCxrA. The PoxCbh-binding DNA sequence in the promoter region of the cellobiohydrolase 1 gene cbh1 was identified. These results expand our understanding of the diverse roles of centromere protein B-like protein, the regulatory network of cellulase and xylanase gene expression, and regulatory mechanisms in fungi.


Assuntos
Proteína B de Centrômero/genética , Proteínas Cromossômicas não Histona/biossíntese , Regulação Fúngica da Expressão Gênica/genética , Sequências Hélice-Volta-Hélice/genética , Penicillium/genética , Penicillium/metabolismo , Celulase/biossíntese , Celulase/genética , Celulose 1,4-beta-Celobiosidase/genética , Proteína B de Centrômero/biossíntese , Proteínas Cromossômicas não Histona/genética , Endo-1,4-beta-Xilanases/biossíntese , Endo-1,4-beta-Xilanases/genética , Fatores de Transcrição/genética
8.
Mol Microbiol ; 116(6): 1512-1532, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34797006

RESUMO

Numerous transcription factors (TFs) in ascomycete fungi play crucial roles in cellular processes; however, how most of them function is poorly understood. Here, we identified and characterized a novel TF, CxrC (POX01387), acting downstream of the key TF CxrA, which is essential for plant-biomass-degrading-enzyme (PBDE) production in Penicillium oxalicum. Deletion of cxrC in P. oxalicum significantly affected the production of PBDEs, as well as mycelial growth and conidiospore production. CxrA directly repressed the expression of cxrC after about 12 hr following switch to Avicel culture. CxrC bound the promoters of major PBDE genes and genes involved in conidiospore development. CxrC was found to bind the TSSGTYR core sequence (S: C and G; Y: T and C; R: G and A) of the important cellulase genes cbh1 and eg1. Both N- and C-terminal peptides of CxrC and the CxrC phosphorylation were found to mediate its homodimerization. The conserved motif LPSVRSLLTP (65-74) in CxrC was found to be required for regulating cellulase production. This study reveals novel mechanisms of TF-mediated regulation of the expression of PBDE genes and genes involved in cellular processes in an ascomycete fungus.


Assuntos
Proteínas Fúngicas/metabolismo , Penicillium/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Celulase/antagonistas & inibidores , Celulase/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Penicillium/química , Penicillium/genética , Penicillium/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Esporos Fúngicos/química , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética
9.
Microb Cell Fact ; 21(1): 272, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566178

RESUMO

BACKGROUND: Raw starch-degrading enzyme (RSDE) is applied in biorefining of starch to produce biofuels efficiently and economically. At present, RSDE is obtained via secretion by filamentous fungi such as Penicillium oxalicum. However, high production cost is a barrier to large-scale industrial application. Genetic engineering is a potentially efficient approach for improving production of RSDE. In this study, we combined genetic engineering and random mutagenesis of P. oxalicum to enhance RSDE production. RESULTS: A total of 3619 mutated P. oxalicum colonies were isolated after six rounds of ethyl methanesulfonate and Co60-γ-ray mutagenesis with the strain A2-13 as the parent strain. Mutant TE4-10 achieved the highest RSDE production of 218.6 ± 3.8 U/mL with raw cassava flour as substrate, a 23.2% compared with A2-13. Simultaneous deletion of transcription repressor gene PoxCxrC and overexpression of activator gene PoxAmyR in TE4-10 resulted in engineered strain GXUR001 with an RSDE yield of 252.6 U/mL, an increase of 15.6% relative to TE4-10. Comparative transcriptomics and real-time quantitative reverse transcription PCR revealed that transcriptional levels of major amylase genes, including raw starch-degrading glucoamylase gene PoxGA15A, were markedly increased in GXUR001. The hydrolysis efficiency of raw flour from cassava and corn by crude RSDE of GXUR001 reached 93.0% and 100%, respectively, after 120 h and 84 h with loading of 150 g/L of corresponding substrate. CONCLUSIONS: Combining genetic engineering and random mutagenesis efficiently enhanced production of RSDE by P. oxalicum. The RSDE-hyperproducing mutant GXUR001 was generated, and its crude RSDE could efficiently degrade raw starch. This strain has great potential for enzyme preparation and further genetic engineering.


Assuntos
Penicillium , Amido , Amido/metabolismo , Penicillium/genética , Penicillium/metabolismo , Engenharia Genética , Mutagênese
10.
Appl Microbiol Biotechnol ; 105(11): 4675-4691, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34076714

RESUMO

Heterotrimeric-G-protein-mediated signaling pathways modulate the expression of the essential genes in many fundamental cellular processes in fungi at the transcription level. However, these processes remain unclear in Penicillium oxalicum. In this study, we generated knockout and knockout-complemented strains of gng-1 (POX07071) encoding the Gγ protein and found that GNG-1 modulated the expression of genes encoding plant-biomass-degrading enzymes (PBDEs) and sporulation-related activators. Interestingly, GNG-1 affected expression of the cxrB that encodes a known transcription factor required for the expression of major cellulase and xylanase genes. Constitutive overexpression of cxrB in ∆gng-1 circumvented the dependence of PBDE production on GNG-1. Further evidence indicated that CxrB indirectly regulated the transcription levels of key amylase genes by controlling the expression of the regulatory gene amyR. These data extended the diversity of Gγ protein functions and provided new insight into the signal transduction and regulation of PBDE gene expression in filamentous fungi. KEY POINTS: • GNG-1 modulates the expression of PBDE genes and sporulation-related genes. • GNG-1 controls expression of the key regulatory gene cxrB. • Overexpression of cxrB circumvents dependence of PBDE production on GNG-1.


Assuntos
Subunidades gama da Proteína de Ligação ao GTP , Penicillium , Biomassa , Regulação Fúngica da Expressão Gênica , Penicillium/genética
11.
Appl Microbiol Biotechnol ; 105(2): 661-678, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33409610

RESUMO

Mitogen-activated protein kinase (MAPK) cascades are broadly conserved and play essential roles in multiple cellular processes, including fungal development, pathogenicity, and secondary metabolism. Their function, however, also exhibits species and strain specificity. Penicillium oxalicum secretes plant-biomass-degrading enzymes (PBDEs) that contribute to the carbon cycle in the natural environment and to utilization of lignocellulose in industrial processes. However, knowledge of the MAPK pathway in P. oxalicum has been relatively limited. In this study, comparative transcriptomic analysis of P. oxalicum, cultured on different carbon sources, found ten putative kinase genes with significantly modified transcriptional levels. Six of these putative kinase genes were knocked out in the parental strain ∆PoxKu70, and deletion of the gene, Fus3/Kss1-like PoxMK1 (POX00158), resulted in the largest reduction (91.1%) in filter paper cellulase production. Further tests revealed that the mutant ∆PoxMK1 lost 37.1 to 92.2% of PBDE production, under both submerged- and solid-state fermentation conditions, compared with ∆PoxKu70. In addition, the mutant ∆PoxMK1 had reduced vegetative growth and increased pigment biosynthesis. Comparative transcriptomic analysis showed that PoxMK1 deletion from P. oxalicum downregulated the expression of major PBDE genes and known regulatory genes such as PoxClrB and PoxCxrB, whereas the transcription of pigment biosynthesis-related genes was upregulated. Comparative phosphoproteomic analysis revealed that PoxMK1 deletion considerably modified phosphorylation of key transcription- and signal transduction-associated proteins, including transcription factors Mcm1 and Atf1, RNA polymerase II subunits Rpb1 and Rpb9, MAPK-associated Hog1 and Ste7, and cyclin-dependent kinase Kin28. These findings provide novel insights into understanding signal transduction and regulation of PBDE gene expression in fungi.Key points• PoxMK1 is involved in expression of PBDE- and pigment synthesis-related genes.• PoxMK1 is required for vegetative growth of P. oxalicum.• PoxMK1 is involved in phosphorylation of key TFs, kinases, and RNA polymerase II.


Assuntos
Penicillium , Biomassa , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno , Penicillium/genética , Penicillium/metabolismo
12.
Appl Microbiol Biotechnol ; 105(2): 679-694, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33394158

RESUMO

Phospholipases play vital roles in immune and inflammatory responses in mammals and plants; however, knowledge of phospholipase functions in fungi is limited. In this study, we investigated the effects of deleting predicted phospholipase genes on cellulase and xylanase production, and morphological phenotype, in Penicillium oxalicum. Individual deletion of nine of the ten predicted phospholipase genes resulted in alteration of cellulase and xylanase production, and the morphological phenotypes, to various degrees. The mutant ∆POX07277 lost 22.5 to 82.8% of cellulase (i.e., filter paper cellulase, carboxymethylcellulase, and p-nitrophenyl-ß-cellobiosidase) and xylanase production, whereas p-nitrophenyl-ß-glucopyranosidase production increased by 5.8-127.8 fold. POX07277 (P. oxalicum gene No. 07277) was predicted to encode phospholipase A2 and was found to negatively affect the sporulation of P. oxalicum. Comparative transcriptomic and quantitative reverse transcription-PCR analysis indicated that POX07277 dynamically affected the expression of cellulase and xylanase genes and the regulatory genes for fungal sporulation, under micro-crystalline cellulose induction. POX07277 was required for the expression of the known regulatory gene PoxCxrB (cellulolytic and xylanolytic regulator B in P. oxalicum), which is involved in cellulase and xylanase gene expression in P. oxalicum. Conversely, POX07277 expression was regulated by PoxCxrB. These findings will aid the understanding of phospholipase functions and provide novel insights into the mechanism of fungal cellulase and xylanase gene expression. KEY POINTS : • The roles of phospholipases were investigated in Penicillium oxalicum. • POX07277 (PLA2) is required for the expression of cellulase and xylanase genes. • PoxCxrB dynamically regulated POX07277 expression.


Assuntos
Celulase/biossíntese , Endo-1,4-beta-Xilanases/biossíntese , Penicillium , Fosfolipases/metabolismo , Regulação Fúngica da Expressão Gênica , Penicillium/enzimologia , Penicillium/genética
13.
Appl Microbiol Biotechnol ; 104(16): 7051-7066, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32577801

RESUMO

Cytophaga hutchinsonii is an aerobic cellulolytic soil bacterium that rapidly digests crystalline cellulose. The predicted mechanism by which C. hutchinsonii digests cellulose differs from that of other known cellulolytic bacteria and fungi. The genome of C. hutchinsonii contains 22 glycoside hydrolase (GH) genes, which may be involved in cellulose degradation. One predicted GH with uncertain specificity, CHU_0961, is a modular enzyme with several modules. In this study, phylogenetic tree of the catalytic modules of the GH9 enzymes showed that CHU_0961 and its homologues formed a new group (group C) of GH9 enzymes. The catalytic module of CHU_0961 (CHU_0961B) was identified as a 1,4-ß-D-glucan glucohydrolase (EC 3.2.1.74) that has unique properties compared with known GH9 cellulases. CHU_0961B showed highest activity against barley glucan, but low activity against other polysaccharides. Interestingly, CHU_0961B showed similar activity against ρ-nitrophenyl ß-D-cellobioside (ρ-NPC) and ρ-nitrophenyl ß-D-glucopyranoside. CHU_0961B released glucose from the nonreducing end of cello-oligosaccharides, ρ-NPC, and barley glucan in a nonprocessive exo-type mode. CHU_0961B also showed same hydrolysis mode against deacetyl-chitooligosaccharides as against cello-oligosaccharides. The kcat/Km values for CHU_0961B against cello-oligosaccharides increased as the degree of polymerization increased, and its kcat/Km for cellohexose was 750 times higher than that for cellobiose. Site-directed mutagenesis showed that threonine 321 in CHU_0961 played a role in hydrolyzing cellobiose to glucose. CHU_0961 may act synergistically with other cellulases to convert cellulose to glucose on the bacterial cell surface. The end product, glucose, may initiate cellulose degradation to provide nutrients for bacterial proliferation in the early stage of C. hutchinsonii growth. KEY POINTS: • CHU_0961 and its homologues formed a novel group (group C) of GH9 enzymes. • CHU_0961 was identified as a 1,4-ß-d-glucan glucohydrolase with unique properties. • CHU_0961 may play an important role in the early stage of C. hutchinsonii growth.


Assuntos
Proteínas de Bactérias/metabolismo , Cytophaga/enzimologia , Glucana 1,4-beta-Glucosidase/metabolismo , Filogenia , Proteínas de Bactérias/genética , Celulose/metabolismo , Cytophaga/genética , Genoma Bacteriano , Glucana 1,4-beta-Glucosidase/genética , Cinética , Alinhamento de Sequência
14.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31604764

RESUMO

Transcriptional regulation of cellulolytic and xylolytic genes in ascomycete fungi is controlled by specific carbon sources in different external environments. Here, comparative transcriptomic analyses of Penicillium oxalicum grown on wheat bran (WB), WB plus rice straw (WR), or WB plus Avicel (WA) as the sole carbon source under solid-state fermentation (SSF) revealed that most of the differentially expressed genes (DEGs) were involved in metabolism, specifically, carbohydrate metabolism. Of the DEGs, the basic core carbohydrate-active enzyme-encoding genes which responded to the plant biomass resources were identified in P. oxalicum, and their transcriptional levels changed to various extents depending on the different carbon sources. Moreover, this study found that three deletion mutants of genes encoding putative transcription factors showed significant alterations in filter paper cellulase production compared with that of a parental P. oxalicum strain with a deletion of Ku70 (ΔPoxKu70 strain) when grown on WR under SSF. Importantly, the ΔPoxAtf1 mutant (with a deletion of P. oxalicumAtf1, also called POX03016) displayed 46.1 to 183.2% more cellulase and xylanase production than a ΔPoxKu70 mutant after 2 days of growth on WR. RNA sequencing and quantitative reverse transcription-PCR revealed that PoxAtf1 dynamically regulated the expression of major cellulase and xylanase genes under SSF. PoxAtf1 bound to the promoter regions of the key cellulase and xylanase genes in vitro This study provides novel insights into the regulatory mechanism of fungal cellulase and xylanase gene expression under SSF.IMPORTANCE The transition to a more environmentally friendly economy encourages studies involving the high-value-added utilization of lignocellulosic biomass. Solid-state fermentation (SSF), that simulates the natural habitat of soil microorganisms, is used for a variety of applications such as biomass biorefinery. Prior to the current study, our understanding of genome-wide gene expression and of the regulation of gene expression of lignocellulose-degrading enzymes in ascomycete fungi during SSF was limited. Here, we employed RNA sequencing and genetic analyses to investigate transcriptomes of Penicillium oxalicum strain EU2101 cultured on medium containing different carbon sources and to identify and characterize transcription factors for regulating the expression of cellulase and xylanase genes during SSF. The results generated will provide novel insights into genetic engineering of filamentous fungi to further increase enzyme production.


Assuntos
Fator 1 Ativador da Transcrição/metabolismo , Ascomicetos/enzimologia , Ascomicetos/genética , Celulase/genética , Fermentação , Regulação Fúngica da Expressão Gênica , Xilosidases/genética , Ascomicetos/crescimento & desenvolvimento , Biomassa , Celulase/metabolismo , Meios de Cultura/química , DNA Fúngico/genética , Deleção de Genes , Genes Fúngicos/genética , Lignina/metabolismo , Penicillium/enzimologia , Penicillium/genética , Penicillium/crescimento & desenvolvimento , Regiões Promotoras Genéticas , RNA Fúngico/genética , Microbiologia do Solo , Xilosidases/metabolismo
15.
World J Microbiol Biotechnol ; 35(11): 171, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673786

RESUMO

Fungal endo-ß-1,4-xylanases (endo-xylanases) can hydrolyze xylan into xylooligosaccharides (XOS), and have potential biotechnological applications for the exploitation of natural renewable polysaccharides. In the current study, we aimed to screen and characterize an efficient fungal endo-xylanase from 100 natural humus-rich soil samples collected in Guizhou Province, China, using extracted sugarcane bagasse xylan (SBX) as the sole carbon source. Initially, 182 fungal isolates producing xylanases were selected, among which Trichoderma sp. strain TP3-36 was identified as showing the highest xylanase activity of 295 U/mL with xylobiose (X2) as the main product when beechwood xylan was used as substrate. Subsequently, a glycoside hydrolase family 11 endo-xylanase, TXyn11A, was purified from strain TP3-36, and its optimal pH and temperature for activity against beechwood xylan were identified to be 5.0 and 55 °C, respectively. TXyn11A was stable across a broad pH range (3.0-10.0), and exhibited strict substrate specificity, including xylan from beechwood, wheat, rye, and sugarcane bagasse, with Km and Vmax values of 5 mg/mL and 1250 µmol/mg min, respectively, toward beechwood xylan. Intriguingly, the main product obtained from hydrolysis of beechwood xylan by TXyn11A was xylobiose, whereas SBX hydrolysis resulted in both X2 and xylotriose. Overall, these characteristics of the endo-xylanase TXyn11A indicate several potential industrial applications.


Assuntos
Dissacarídeos/metabolismo , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/isolamento & purificação , Trichoderma/enzimologia , Xilanos/metabolismo , Celulose , China , Estabilidade Enzimática , Proteínas Fúngicas/isolamento & purificação , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Saccharum/metabolismo , Microbiologia do Solo , Especificidade por Substrato , Temperatura , Trichoderma/genética , Trichoderma/isolamento & purificação
16.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29980558

RESUMO

Soil fungi produce a wide range of chemical compounds and enzymes with potential for applications in medicine and biotechnology. Cellular processes in soil fungi are highly dependent on the regulation under environmentally induced stress, but most of the underlying mechanisms remain unclear. Previous work identified a key GATA-type transcription factor, Penicillium oxalicum NsdD (PoxNsdD; also called POX08415), that regulates the expression of cellulase and xylanase genes in P. oxalicum PoxNsdD shares 57 to 64% identity with the key activator NsdD, involved in asexual development in Aspergillus In the present study, the regulatory roles of PoxNsdD in P. oxalicum were further explored. Comparative transcriptomic profiling revealed that PoxNsdD regulates major genes involved in starch, cellulose, and hemicellulose degradation, as well as conidiation and pigment biosynthesis. Subsequent experiments confirmed that a ΔPoxNsdD strain lost 43.9 to 78.8% of starch-digesting enzyme activity when grown on soluble corn starch, and it produced 54.9 to 146.0% more conidia than the ΔPoxKu70 parental strain. During cultivation, ΔPoxNsdD cultures changed color, from pale orange to brick red, while the ΔPoxKu70 cultures remained bluish white. Real-time quantitative reverse transcription-PCR showed that PoxNsdD dynamically regulated the expression of a glucoamylase gene (POX01356/Amy15A), an α-amylase gene (POX09352/Amy13A), and a regulatory gene (POX03890/amyR), as well as a polyketide synthase gene (POX01430/alb1/wA) for yellow pigment biosynthesis and a conidiation-regulated gene (POX06534/brlA). Moreover, in vitro binding experiments showed that PoxNsdD bound the promoter regions of the above-described genes. This work provides novel insights into the regulatory mechanisms of fungal cellular processes and may assist in genetic engineering of Poxalicum for potential industrial and medical applications.IMPORTANCE Most filamentous fungi produce a vast number of extracellular enzymes that are used commercially for biorefineries of plant biomass to produce biofuels and value-added chemicals, which might promote the transition to a more environmentally friendly economy. The expression of these extracellular enzyme genes is tightly controlled at the transcriptional level, which limits their yields. Hitherto our understanding of the regulation of expression of plant biomass-degrading enzyme genes in filamentous fungi has been rather limited. In the present study, regulatory roles of a key regulator, PoxNsdD, were further explored in the soil fungus Penicillium oxalicum, contributing to the understanding of gene regulation in filamentous fungi and revealing the biotechnological potential of Poxalicum via genetic engineering.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Penicillium/metabolismo , Pigmentos Biológicos/biossíntese , Esporos Fúngicos/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Biodegradação Ambiental , Celulase/genética , Celulase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Glucana 1,4-alfa-Glucosidase/genética , Glucana 1,4-alfa-Glucosidase/metabolismo , Penicillium/enzimologia , Penicillium/genética , Penicillium/crescimento & desenvolvimento , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Fatores de Transcrição/genética , alfa-Amilases/genética , alfa-Amilases/metabolismo
17.
Appl Microbiol Biotechnol ; 102(21): 9291-9301, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30155751

RESUMO

Raw starch-degrading enzymes (RSDEs) are capable of directly degrading raw starch granules below the gelatinization temperature of starch, which may significantly reduce the cost of starch-based biorefining. However, low yields of natural RSDEs from filamentous fungi limit their industrial application. In this study, transcriptomic and secretomic profiling was employed to screen strongest promoters and signal peptides for use in overexpression of a RSDE gene in Penicillium oxalicum. Top five strong promoters and three signal peptides were detected. Using a green fluorescent protein (GFP) as the reporter, the inducible promoter pPoxEgCel5B of an endoglucanase gene PoxEgCel5B and the signal peptide spPoxGA15A of a raw starch-degrading glucoamylase PoxGA15A were respectively identified as driving the highest GFP production in P. oxalicum. PoxGA15A-overexpressed P. oxalicum strain OXPoxGA15A, which was constructed based on both pPoxEgCel5B and spPoxGA15A, produced significantly higher amounts of recombinant PoxGA15A than the parental strain ∆PoxKu70. Furthermore, crude enzyme from the OXPoxGA15A strain exhibited high activities towards raw starch from cassava, potato, and uncooked soluble starch. Specifically, raw cassava starch-degrading enzyme activity reached 241.6 U/mL in the OXPoxGA15A, which was 3.4-fold higher than that of the ∆PoxKu70. This work provides a feasible method for hyperproduction of RSDEs in P. oxalicum.


Assuntos
Glucana 1,4-alfa-Glucosidase/genética , Penicillium/genética , Regiões Promotoras Genéticas/genética , Sinais Direcionadores de Proteínas/genética , Amido/genética , Fermentação/genética , Fungos/genética , Manihot/genética , Proteínas Recombinantes/genética , Solanum tuberosum/genética , Amido/metabolismo , Temperatura
18.
Appl Microbiol Biotechnol ; 102(8): 3739-3753, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29511847

RESUMO

High-mobility group (HMG)-box proteins are involved in chromatin organization in eukaryotes, especially in sex determination and regulation of mitochondrial DNA compaction. Although a novel HMG-box protein, PoxHmbB, had been initially identified to be required for filter paper cellulase activity by Penicillium oxalicum, the biological roles of HMG-box proteins in biomass-degrading enzyme production have not been systematically explored. The P. oxalicum mutant ∆PoxHmbB lost 34.7-86.5% of cellulase (endoglucanase, p-nitrophenyl-ß-cellobiosidase, and p-nitrophenyl-ß-glucopyranosidase) activities and 60.3% of xylanase activity following Avicel induction, whereas it exhibited about onefold increase in amylase activity following soluble corn starch induction. Furthermore, ∆PoxHmbB presented delayed conidiation and hyphae growth. Transcriptomic profiling and real-time quantitative reverse transcription-PCR revealed that PoxHmbB regulated the expression of major genes encoding plant biomass-degrading enzymes such as PoxCel7A-2, PoxCel5B, PoxBgl3A, PoxXyn11B, and PoxGA15A, as well as those involved in conidiation such as PoxBrlA. In vitro binding experiments further confirmed that PoxHmbB directly binds to the promoter regions of these major genes. These results further indicate the diversity of the biological functions of HMG-box proteins and provide a novel and promising engineering target for improving plant biomass-degrading enzyme production in filamentous fungi.


Assuntos
Celulase/biossíntese , Celulase/genética , Proteínas HMGB/metabolismo , Penicillium/enzimologia , Penicillium/genética , Biomassa , Celulase/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Mutação
19.
Appl Microbiol Biotechnol ; 101(14): 5723-5737, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28551855

RESUMO

In bacterial cellulase systems, glycoside hydrolase family 9 (GH9) cellulases are generally regarded as the major cellulose-degrading factors besides GH48 exoglucanase. In this study, umcel9A, which was cloned from uncultured microorganisms from compost, with the encoded protein being theme C GH9 cellulase, was heterologously expressed in Escherichia coli, and the biochemical properties of the purified enzyme were characterized. Hydrolysis of carboxylmethylcellulose (CMC) by Umcel9A led to the decreased viscosity of CMC solution and production of reducing sugars. Interestingly, cellobiose was the major product when cellulosic materials were hydrolyzed by Umcel9A. Six representative carbohydrate-binding modules (CBMs) from different CBM families (CBM1, CBM2, CBM3, CBM4, CBM10, and CBM72) were fused with Umcel9A at the natural terminal position, resulting in significant enhancement of the binding capacity of the chimeric enzymes toward four different insoluble celluloses as compared with that of Umcel9A. Catalytic activity of the chimeric enzymes against insoluble celluloses, including phosphoric acid-swollen cellulose (PASC), alkali-pretreated sugarcane bagasse (ASB), filter paper powder (FPP), and Avicel, was higher than that of Umcel9A, except for Umcel9A-CBM3. In these chimeric enzymes, CBM4-Umcel9A exhibited the highest activity toward the four tested insoluble celluloses and displayed 4.2-, 3.0-, 2.4-, and 6.6-fold enhanced activity toward PASC, ASB, FPP, and Avicel, respectively, when compared with that of Umcel9A. CBM4-Umcel9A also showed highest V max and catalytic efficiency (k cat/K M) against PASC. Construction of chimeric enzymes may have potential applications in biocatalytic processes and provides insight into the evolution of the molecular architecture of catalytic module and CBM in GH9 cellulases.


Assuntos
Biocatálise , Carboximetilcelulose Sódica/metabolismo , Celulase/química , Celulase/metabolismo , Metabolismo dos Carboidratos , Celulase/genética , Celulase/isolamento & purificação , Clonagem Molecular , Escherichia coli/genética , Hidrólise , Cinética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
20.
World J Microbiol Biotechnol ; 33(9): 171, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28849313

RESUMO

Talaromyces pinophilus is a promising filamentous fungus for industrial production of biomass-degrading enzymes used in biorefining, and its genome was recently sequenced and reported. However, functional analysis of genes in T. pinophilus is rather limited owing to lack of genetic tools. In this study, a putative TpKu70 encoding the Ku70 homolog involved in the classic non-homologous end-joining pathway was deleted in T. pinophilus 1-95. ΔTpKu70 displayed no apparent defect in vegetative growth and enzyme production, and presented similar sensitivity to benomyl, bleomycin, and UV, when compared with the wild-type T. pinophilus strain 1-95. Seven genes that encode putative transcription factors, including TpAmyR, were successfully knocked out in ΔTpKu70 at 61.5-100% of homologous recombination frequency, which is significantly higher than that noted in the wild-type. Interestingly, ΔTpAmyR produced approximately 20% of amylase secreted by the parent strain ΔTpKu70 in medium containing soluble starch from corn as the sole carbon source. Real-time quantitative reverse transcription PCR showed that TpAmyR positively regulated the expression of genes encoding α-amylase and glucoamylase. Thus, this study provides a useful tool for genetic analysis of T. pinophilus, and identification of a key role for the transcription factor TpAmyR in amylase production in T. pinophilus.


Assuntos
Autoantígeno Ku/genética , Talaromyces/crescimento & desenvolvimento , Fatores de Transcrição/genética , Amilases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Técnicas de Inativação de Genes , Recombinação Homóloga , Talaromyces/enzimologia , Talaromyces/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA