Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Immunol ; 213(4): 494-505, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38967520

RESUMO

Stimulator of IFN genes (STING) is a critical component of the innate immune system, playing an essential role in defending against DNA virus infections. However, the mechanisms governing basal STING regulation remain poorly understood. In this study, we demonstrate that the basal level of STING is critically maintained by hypoxia-inducible factor 1 (HIF-1)α through transcription. Under normal conditions, HIF-1α binds constitutively to the promoter region of STING, actively promoting its transcription. Knocking down HIF-1α results in a decrease in STING expression in multiple cell lines and zebrafish, which in turn reduces cellular responses to synthetic dsDNAs, including cell signaling and IFN production. Moreover, this decrease in STING levels leads to an increase in cellular susceptibility to DNA viruses HSV-1 and pseudorabies virus. These findings unveil a (to our knowledge) novel role of HIF-1α in maintaining basal STING levels and provide valuable insights into STING-mediated antiviral activities and associated diseases.


Assuntos
Herpesvirus Humano 1 , Subunidade alfa do Fator 1 Induzível por Hipóxia , Imunidade Inata , Proteínas de Membrana , Peixe-Zebra , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peixe-Zebra/imunologia , Herpesvirus Humano 1/imunologia , Herpesvirus Suídeo 1/imunologia , Imunidade Celular , Regulação da Expressão Gênica/imunologia , Transdução de Sinais/imunologia , Transcrição Gênica/imunologia , Regiões Promotoras Genéticas , Células HEK293 , Linhagem Celular , Herpes Simples/imunologia , Pseudorraiva/imunologia
2.
J Virol ; 98(9): e0078424, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39194214

RESUMO

Porcine respiratory and reproductive syndrome (PRRS) is one of the most devastating infectious diseases of pigs, causing reproductive failures in sows and severe respiratory symptoms in piglets and growing pigs. MicroRNAs (miRNAs) are reported to play an essential role in virus-host interactions. In this study, we demonstrated that miR-451 enhanced type I interferon (IFN-I) production through targeting proteasome subunit ß8 (PSMB8), therefore restricting PRRS virus (PRRSV) replication. We showed that the expression of PSMB8 was upregulated by PRRSV infection, and knockdown of PSMB8 inhibited PRRSV replication by promoting IFN-I production. Moreover, we demonstrated that PSMB8 interacted with the regulatory domain of IRF3 to mediate K48-linked polyubiquitination and degradation of IRF3. Also, importantly, we showed that PSMB8, as a target gene of miR-451, negatively regulated IFN-I production by promoting IRF3 degradation, which is a previously unknown mechanism for PSMB8 to modulate innate immune responses. IMPORTANCE: Porcine respiratory and reproductive syndrome virus (PRRSV), as a huge threat to the swine industry, is a causative agent that urgently needs to be solved. The dissecting of PRRSV pathogenesis and understanding of the host-pathogen interaction will provide insights into developing effective anti-PRRSV strategies. In this study, we showed that miR-451 dramatically inhibited PRRSV replication by targeting proteasome subunit ß8 (PSMB8), a subunit of the immunoproteasome. Mutation of PSMB8 is often related to autoinflammatory diseases due to the elevated IFN production. We revealed that PSMB8 downregulated IFN production by promoting IRF3 degradation. In addition, we showed that PRRSV infection upregulated PSMB8 expression. Taken together, our findings reveal that miR-451 is a negative regulator of PRRSV replication, and PSMB8, a target gene of miR-451, negatively regulates IFN-I production by promoting IRF3 degradation, which is a previously unknown mechanism for PSMB8 to regulate innate immune responses.


Assuntos
Fator Regulador 3 de Interferon , MicroRNAs , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Complexo de Endopeptidases do Proteassoma , Replicação Viral , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , MicroRNAs/genética , MicroRNAs/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/imunologia , Humanos , Interferon Tipo I/metabolismo , Ubiquitinação , Imunidade Inata , Linhagem Celular , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Proteólise
3.
J Virol ; 97(3): e0013423, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916938

RESUMO

Type I interferon (IFN-I) response plays a prominent role in innate immunity, which is frequently modulated during viral infection. Here, we report DNA methylation regulator UHRF1 as a potent negative regulator of IFN-I induction during alphaherpesvirus infection, whereas the viruses in turn regulates the transcriptional expression of UHRF1. Knockdown of UHRF1 in cells significantly increases interferon-ß (IFN-ß)-mediated gene transcription and viral inhibition against herpes simplex virus 1 (HSV1) and pseudorabies virus (PRV). Mechanistically, UHRF1 deficiency promotes IFN-I production by triggering dsRNA-sensing receptor RIG-I and activating IRF3 phosphorylation. Knockdown of UHRF1 in cells upregulates the accumulation of double-stranded RNA (dsRNA), including host endogenous retroviral sequence (ERV) transcripts, while the treatment of RNase III, known to specifically digest dsRNA, prevents IFN-ß induction by siUHRF1. Furthermore, the double-knockdown assay of UHRF1 and DNA methyltransferase DNMT1 suggests that siUHRF1-mediated DNA demethylation may play an important role in dsRNA accumulation and subsequently IFN induction. These findings establish the essential role of UHRF1 in IFN-I-induced antiviral immunity and reveal UHRF1 as a potential antivrial target. IMPORTANCE Alphaherpesviruses can establish lifelong infections and cause many diseases in humans and animals, which rely partly on their interaction with IFN-mediated innate immune response. Using alphaherpesviruses PRV and HSV-1 as models, we identified an essential role of DNA methylation regulator UHRF1 in IFN-mediated immunity against virus replication, which unravels a novel mechanism employed by epigenetic factor to control IFN-mediated antiviral immune response and highlight UHRF1, which might be a potential target for antiviral drug development.


Assuntos
Herpesvirus Humano 1 , Herpesvirus Suídeo 1 , Interferon Tipo I , Animais , Humanos , Antivirais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Expressão Gênica , Herpesvirus Humano 1/genética , Herpesvirus Suídeo 1/genética , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Interferon beta/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Alphaherpesvirinae , Receptores Imunológicos/imunologia
4.
Angew Chem Int Ed Engl ; : e202411721, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136169

RESUMO

Photocatalytic hydrogen production is one of the most valuable technologies in the future energy system. Here, we designed a metal-covalent organic frameworks (MCOFs) with both small-sized metal clusters and nitrogen-rich ligands, named COF-Cu3TG. Based on our design, small-sized metal clusters were selected to increase the density of active sites and shorten the distance of electron transport to active sites. While another building block containing nitrogen-rich organic ligands acted as a node that could in situ anchor metal atoms during photocatalysis and form interlayer single-atom electron bridges (SAEB) to accelerate electron transport. Together, they promoted photocatalytic performance. This represented the further utilization of Ru atoms and was an additional application of the photosensitizer. N2-Ru-N2 electron bridge (Ru-SAEB) was created in situ between the layers, resulting in a considerable enhancement in the hydrogen production rate of the photocatalyst to 10.47 mmol g-1 h-1. Through theoretical calculation and EXAFS, the existence position and action mechanism of Ru-SAEB were reasonably inferred, further confirming the rationality of the Ru-SAEB configuration. A sufficiently proximity between the small-sized Cu3 cluster and the Ru-SAEB was found to expedite electron transfer. This work demonstrated the synergistic impact of small molecular clusters with Ru-SAEB for efficient photocatalytic hydrogen production.

5.
Angew Chem Int Ed Engl ; 63(23): e202403918, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38519423

RESUMO

Precise design and tuning of Zn hopping/transfer sites with deeper understanding of the dendrite-formation mechanism is vital in artificial anode protective coating for aqueous Zn-ion batteries (AZIBs). Here, we probe into the role of anode-coating interfaces by designing a series of anhydride-based covalent organic frameworks (i.e., PI-DP-COF and PI-DT-COF) with specifically designed zigzag hopping sites and zincophilic anhydride groups that can serve as desired platforms to investigate the related Zn2+ hopping/transfer behaviours as well as the interfacial interaction. Combining theoretical calculations with experiments, the ABC stacking models of these COFs endow the structures with specific zigzag sites along the 1D channel that can accelerate Zn2+ transfer kinetics, lower surface-energy, homogenize ion-distribution or electric-filed. Attributed to these superiorities, thus-obtained optimal PI-DT-COF cells offer excellent cycling lifespan in both symmetric-cell (2000 cycles at 60 mA cm-2) and full-cell (1600 cycles at 2 A g-1), outperforming almost all the reported porous crystalline materials.

6.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32641476

RESUMO

Promyelocytic leukemia nuclear bodies (PML-NBs) possess an important intrinsic antiviral activity against alphaherpesvirus infection. PML is the structural backbone of NBs, comprising different isoforms. However, the contribution of each isoform to alphaherpesvirus restriction is not well understood. Here, we report the role of PML-NBs and swine PML (sPML) isoforms in pseudorabies virus (PRV) infection in its natural host swine cells. We found that sPML-NBs exhibit an anti-PRV activity in the context of increasing the expression level of endogenous sPML. Of four sPML isoforms cloned and examined, only isoforms sPML-II and -IIa, not sPML-I and -IVa, expressed in a sPML knockout cells inhibit PRV infection. Both the unique 7b region of sPML-II and the sumoylation-dependent normal formation of PML-NBs are required. 7b possesses a transcriptional repression activity and suppresses viral gene transcription during PRV infection with the cysteine residues 589 and 599 being critically involved. We conclude that sPML-NBs inhibit PRV infection partly by repressing viral gene transcription through the 7b region of sPML-II.IMPORTANCE PML-NBs are nuclear sites that mediate the antiviral restriction of alphaherpesvirus gene expression and replication. However, the contribution of each PML isoform to this activity of PML-NBs is not well characterized. Using PRV and its natural host swine cells as a system, we have discovered that the unique C terminus of sPML isoform II is required for PML-NBs to inhibit PRV infection by directly engaging in repression of viral gene transcription. Our study not only confirms in swine cells that PML-NBs have an antiviral function but also presents a mechanism to suggest that PML-NBs inhibit viral infection in an isoform specific manner.


Assuntos
Herpesvirus Suídeo 1/genética , Corpos de Inclusão Intranuclear/genética , Proteína da Leucemia Promielocítica/genética , Transcrição Gênica , Proteínas Virais/genética , Animais , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Regulação da Expressão Gênica , Células HEK293 , Herpesvirus Suídeo 1/metabolismo , Herpesvirus Suídeo 1/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Corpos de Inclusão Intranuclear/metabolismo , Corpos de Inclusão Intranuclear/virologia , Macrófagos/metabolismo , Macrófagos/virologia , Proteína da Leucemia Promielocítica/metabolismo , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Sumoilação , Suínos , Proteínas Virais/metabolismo
7.
PLoS Pathog ; 15(1): e1007559, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30682178

RESUMO

Type I interferon response plays a prominent role against viral infection, which is frequently disrupted by viruses. Here, we report Bcl-2 associated transcription factor 1 (Bclaf1) is degraded during the alphaherpesvirus Pseudorabies virus (PRV) and Herpes simplex virus type 1 (HSV-1) infections through the viral protein US3. We further reveal that Bclaf1 functions critically in type I interferon signaling. Knockdown or knockout of Bclaf1 in cells significantly impairs interferon-α (IFNα) -mediated gene transcription and viral inhibition against US3 deficient PRV and HSV-1. Mechanistically, Bclaf1 maintains a mechanism allowing STAT1 and STAT2 to be efficiently phosphorylated in response to IFNα, and more importantly, facilitates IFN-stimulated gene factor 3 (ISGF3) binding with IFN-stimulated response elements (ISRE) for efficient gene transcription by directly interacting with ISRE and STAT2. Our studies establish the importance of Bclaf1 in IFNα-induced antiviral immunity and in the control of viral infections.


Assuntos
Interferons/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Virais/metabolismo , Alphaherpesvirinae/metabolismo , Alphaherpesvirinae/patogenicidade , Animais , Antivirais/farmacologia , Linhagem Celular , China , Herpesvirus Humano 1/metabolismo , Herpesvirus Suídeo 1/metabolismo , Humanos , Imunidade Inata/efeitos dos fármacos , Interferon Tipo I/imunologia , Fator Gênico 3 Estimulado por Interferon, Subunidade alfa/metabolismo , Interferon-alfa/metabolismo , Interferons/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/fisiologia , Elementos de Resposta , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais/imunologia , Proteínas Supressoras de Tumor/fisiologia , Proteínas Virais/genética , Viroses/genética
8.
Arch Virol ; 166(7): 1943-1950, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33982180

RESUMO

Inflammatory responses are an important part of the innate immune response during viral infection. Various inflammasome complexes have been identified. The pyrin domain-containing 3 (NLRP3) inflammasome plays a critical role in detecting some RNA viruses, such as influenza virus. However, the effect of the NLRP3 inflammasome on infectious bursal disease virus (IBDV) replication is still unclear. Here, we report that IBDV-infection induces the transcription of NLRP3 inflammasome and IL-1ß genes in the immortalized chicken embryo fibroblast cell line DF-1. Inhibition of caspase-1 by Belnacasan (VX-765) suppressed the transcription of IL-1ß, reduced cell lysis, and significantly promoted IBDV replication in DF-1 cells. Furthermore, knockdown of NLRP3 by small interfering RNA promoted IBDV replication in the host cells. Thus, IBDV can induce NLRP3 inflammasome activation in DF-1 cells through a mechanism requiring viral replication, revealing a new antiviral mechanism employed by the host.


Assuntos
Vírus da Doença Infecciosa da Bursa/imunologia , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Replicação Viral/imunologia , Animais , Linhagem Celular , Galinhas/virologia , Fibroblastos/imunologia , Fibroblastos/virologia , Imunidade Inata/imunologia , Interleucina-1beta/imunologia , RNA Interferente Pequeno/imunologia
9.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31413135

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is widely prevalent in pigs, resulting in significant economic losses worldwide. A compelling impact of PRRSV infection is severe pneumonia. In the present study, we found that interleukin-17 (IL-17) was upregulated by PRRSV infection. Subsequently, we demonstrated that PI3K and p38MAPK signaling pathways were essential for PRRSV-induced IL-17 production as addition of phosphatidylinositol 3-kinase (PI3K) and p38MAPK inhibitors dramatically reduced IL-17 production. Furthermore, we show here that deleting the C/EBPß and CREB binding motif in porcine IL-17 promoter abrogated its activation and that knockdown of C/EBPß and CREB remarkably impaired PRRSV-induced IL-17 production, suggesting that IL-17 expression was dependent on C/EBPß and CREB. More specifically, we demonstrate that PRRSV nonstructural protein 11 (nsp11) induced IL-17 production, which was also dependent on PI3K-p38MAPK-C/EBPß/CREB pathways. We then show that Ser74 and Phe76 amino acids were essential for nsp11 to induce IL-17 production and viral rescue. In addition, IRAK1 was required for nsp11 to activate PI3K and enhance IL-17 expression by interacting with each other. Importantly, we demonstrate that PI3K inhibitor significantly suppressed IL-17 production and lung inflammation caused by HP-PRRSV in vivo, implicating that higher IL-17 level induced by HP-PRRSV might be associated with severe lung inflammation. These findings provide new insights onto the molecular mechanisms of the PRRSV-induced IL-17 production and help us further understand the pathogenesis of PRRSV infection.IMPORTANCE Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) associated with severe pneumonia has been one of the most important viral pathogens in pigs. IL-17 is a proinflammatory cytokine that might be associated with the strong inflammation caused by PRRSV. Therefore, we sought to determine whether PRRSV infection affects IL-17 expression, and if so, determine this might partially explain the underlying mechanisms for the strong inflammation in HP-PRRSV-infected pigs, especially in lungs. Here, we show that PRRSV significantly induced IL-17 expression, and we subsequently dissected the molecular mechanisms about how PRRSV regulated IL-17 production. Furthermore, we show that Ser74 and Phe76 in nsp11 were indispensable for IL-17 production and viral replication. Importantly, we demonstrated that PI3K inhibitor impaired IL-17 production and alleviated lung inflammation caused by HP-PRRSV infection. Our findings will help us for a better understanding of PRRSV pathogenesis.


Assuntos
Endorribonucleases/metabolismo , Interleucina-17/metabolismo , Pneumonia/patologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Transdução de Sinais , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Endorribonucleases/genética , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-17/genética , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Pneumonia/metabolismo , Pneumonia/virologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/patologia , Suínos , Proteínas não Estruturais Virais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(36): E7564-E7573, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827346

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) and Rift Valley fever virus (RVFV) are two arthropod-borne phleboviruses in the Bunyaviridae family, which cause severe illness in humans and animals. Glycoprotein N (Gn) is one of the envelope proteins on the virus surface and is a major antigenic component. Despite its importance for virus entry and fusion, the molecular features of the phleboviruse Gn were unknown. Here, we present the crystal structures of the Gn head domain from both SFTSV and RVFV, which display a similar compact triangular shape overall, while the three subdomains (domains I, II, and III) making up the Gn head display different arrangements. Ten cysteines in the Gn stem region are conserved among phleboviruses, four of which are responsible for Gn dimerization, as revealed in this study, and they are highly conserved for all members in Bunyaviridae Therefore, we propose an anchoring mode on the viral surface. The complex structure of the SFTSV Gn head and human neutralizing antibody MAb 4-5 reveals that helices α6 in subdomain III is the key component for neutralization. Importantly, the structure indicates that domain III is an ideal region recognized by specific neutralizing antibodies, while domain II is probably recognized by broadly neutralizing antibodies. Collectively, Gn is a desirable vaccine target, and our data provide a molecular basis for the rational design of vaccines against the diseases caused by phleboviruses and a model for bunyavirus Gn embedding on the viral surface.


Assuntos
Anticorpos Neutralizantes/metabolismo , Epitopos/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Phlebovirus/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Animais , Infecções por Bunyaviridae/virologia , Linhagem Celular , Cristalografia por Raios X , Epitopos/química , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/metabolismo , Células Sf9 , Internalização do Vírus
11.
J Virol ; 92(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29070692

RESUMO

Heartland virus (HRTV) is an emerging human pathogen that belongs to the newly defined family Phenuiviridae, order Bunyavirales Gn and Gc are two viral surface glycoproteins encoded by the M segment and are required for early events during infection. HRTV delivers its genome into the cytoplasm by fusion of the viral envelope and endosomal membranes under low-pH conditions. Here, we describe the crystal structure of HRTV Gc in its postfusion conformation. The structure shows that Gc displays a typical class II fusion protein conformation, and the overall structure is identical to severe fever with thrombocytopenia syndrome virus (SFTSV) Gc, which also belongs to the Phenuiviridae family. However, our structural analysis indicates that the hantavirus Gc presents distinct features in the aspects of subdomain orientation, N-linked glycosylation, the interaction pattern between protomers, and the fusion loop conformation. This suggests their family-specific subunit arrangement during the fusogenic process and supports the recent taxonomic revision of bunyaviruses. Our results provide insights into the comprehensive comparison of class II membrane fusion proteins in two bunyavirus families, yielding valuable information for treatments against these human pathogens.IMPORTANCE HRTV is an insect-borne virus found in America that can infect humans. It belongs to the newly defined family Phenuiviridae, order Bunyavirales HRTV contains three single-stranded RNA segments (L, M, and S). The M segment of the virus encodes a polyprotein precursor that is cleaved into two glycoproteins, Gn and Gc. Gc is a fusion protein facilitating virus entry into host cells. Here, we report the crystal structure of the HRTV Gc protein. The structure displays a typical class II fusion protein conformation. Comparison of HRTV Gc with a recently solved structure of another bunyavirus Gc revealed that these Gc structures display a newly defined family specificity, supporting the recent International Committee on Taxonomy of Viruses reclassification of the bunyaviruses. Our results expand the knowledge of bunyavirus fusion proteins and help us to understand bunyavirus characterizations. This study provides useful information to improve protection against and therapies for bunyavirus infections.


Assuntos
Glicoproteínas/química , Phlebovirus/química , Vírus de RNA/química , Proteínas do Envelope Viral/química , Proteínas Virais de Fusão/química , Bunyaviridae/química , Cristalização , Cristalografia por Raios X , Glicosilação , Orthohantavírus/química , Orthohantavírus/classificação , Phlebovirus/classificação , Phlebovirus/genética , Conformação Proteica , Domínios Proteicos , Vírus de RNA/classificação , Vírus de RNA/genética , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus
12.
J Gen Virol ; 99(12): 1671-1680, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30382935

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is one of the most important diseases in pigs. MicroRNAs (miRNAs) have emerged as an important regulator of virus-host cell interactions and miR-30c has been found to facilitate PRRSV replication. Here, we found that the interferon-alpha/beta receptor beta chain (IFNAR2) was down-regulated, while miR-30c was up-regulated during HV (a highly pathogenic type 2 PRRSV strain) and CH-1a (a classic type 2 PRRSV strain) infection. Subsequently, using bioinformatics analysis, we predicted that the IFNAR2 was targeted by miR-30c. A luciferase assay verified that the 3' UTR of IFNAR2 was targeted by miR-30c, as a mutation on either the target sequence or the miR-30c seed sequence reversed the luciferase activity. In addition, miR-30c and IFNAR2 mRNA were physically co-localized in RNA-induced silencing complex (RISC). Importantly, we showed that miR-30c also impaired the induction of IFN-stimulated genes (ISGs) by targeting IFNAR2. Our findings further reveal the mechanism of miR-30c promoting PRRSV replication.


Assuntos
Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , MicroRNAs/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/crescimento & desenvolvimento , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Receptor de Interferon alfa e beta/antagonistas & inibidores , Animais , Células Cultivadas , Regulação da Expressão Gênica , Macrófagos Alveolares/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Suínos , Doenças dos Suínos
13.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794045

RESUMO

Alphaherpesviruses that establish persistent infections rely partly on their ability to evade host antiviral responses, notably the type I interferon (IFN) response. However, the mechanisms employed by alphaherpesviruses to avoid this response are not well understood. Pseudorabies virus (PRV) is an economically important pathogen and a useful model system for studying alphaherpesvirus biology. To identify PRV proteins that antagonize type I IFN signaling, we performed a screen by using an IFN-stimulated response element reporter in the swine cell line CRL. Unexpectedly, we identified the dUTPase UL50 as a strong inhibitor. We confirmed that UL50 has the ability to inhibit type I IFN signaling by performing ectopic expression of UL50 in cells and deletion of UL50 in PRV. Mechanistically, UL50 impeded type I IFN-induced STAT1 phosphorylation, likely by accelerating lysosomal degradation of IFN receptor 1 (IFNAR1). In addition, this UL50 activity was independent of its dUTPase activity and required amino acids 225 to 253 in the C-terminal region. The UL50 encoded by herpes simplex virus 1 (HSV-1) also possessed similar activity. Moreover, UL50-deleted PRV was more susceptible to IFN than UL50-proficient PRV. Our results suggest that in addition to its dUTPase activity, the UL50 protein of alphaherpesviruses possesses the ability to suppress type I IFN signaling by promoting lysosomal degradation of IFNAR1, thereby contributing to immune evasion. This finding reveals UL50 as a potential antiviral target.IMPORTANCE Alphaherpesviruses can establish lifelong infections and cause many diseases in humans and animals. Pseudorabies virus (PRV) is a swine alphaherpesvirus that threatens pig production. Using PRV as a model, we found that this alphaherpesvirus could utilize its encoded dUTPase UL50 to induce IFNAR1 degradation and inhibit type I IFN signaling in an enzymatic activity-independent manner. Our finding reveals a mechanism employed by an alphaherpesvirus to evade the immune response and indicates that UL50 is an important viral protein in pathogenesis and is a potential target for antiviral drug development.


Assuntos
Herpesvirus Suídeo 1/enzimologia , Interferon Tipo I/farmacologia , Lisossomos/metabolismo , Pseudorraiva/metabolismo , Pirofosfatases/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Sequência de Aminoácidos , Animais , Antivirais/farmacologia , Células HeLa , Herpesvirus Suídeo 1/genética , Humanos , Evasão da Resposta Imune , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/virologia , Fosforilação , Proteólise , Pseudorraiva/tratamento farmacológico , Pseudorraiva/virologia , Pirofosfatases/genética , Receptor de Interferon alfa e beta/genética , Homologia de Sequência , Transdução de Sinais , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo
14.
J Immunol ; 196(5): 2272-82, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26826240

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen and has evolved several mechanisms to evade IFN-I responses. We report that a host microRNA, miR-30c, was upregulated by PRRSV via activating NF-κB and facilitated its ability to infect subject animals. Subsequently, we demonstrated that miR-30c was a potent negative regulator of IFN-I signaling by targeting JAK1, resulting in the enhancement of PRRSV infection. In addition, we found that JAK1 expression was significantly decreased by PRRSV and recovered when miR-30c inhibitor was overexpressed. Importantly, miR-30c was also upregulated by PRRSV infection in vivo, and miR-30c expression corresponded well with viral loads in lungs and porcine alveolar macrophages of PRRSV-infected pigs. Our findings identify a new strategy taken by PRRSV to escape IFN-I-mediated antiviral immune responses by engaging miR-30c and, thus, improve our understanding of its pathogenesis.


Assuntos
Interferon Tipo I/metabolismo , Janus Quinase 1/genética , MicroRNAs/genética , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Interferência de RNA , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Regulação da Expressão Gênica , Janus Quinase 1/química , Janus Quinase 1/metabolismo , MicroRNAs/química , NF-kappa B/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , RNA Mensageiro/química , RNA Mensageiro/genética , Transdução de Sinais , Suínos , Regulação para Cima , Replicação Viral
15.
Nucleic Acids Res ; 42(5): 3464-77, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24369429

RESUMO

All positive-stranded RNA viruses with genomes>∼7 kb encode helicases, which generally are poorly characterized. The core of the nidovirus superfamily 1 helicase (HEL1) is associated with a unique N-terminal zinc-binding domain (ZBD) that was previously implicated in helicase regulation, genome replication and subgenomic mRNA synthesis. The high-resolution structure of the arterivirus helicase (nsp10), alone and in complex with a polynucleotide substrate, now provides first insights into the structural basis for nidovirus helicase function. A previously uncharacterized domain 1B connects HEL1 domains 1A and 2A to a long linker of ZBD, which further consists of a novel RING-like module and treble-clef zinc finger, together coordinating three Zn atoms. On substrate binding, major conformational changes were evident outside the HEL1 domains, notably in domain 1B. Structural characterization, mutagenesis and biochemistry revealed that helicase activity depends on the extensive relay of interactions between the ZBD and HEL1 domains. The arterivirus helicase structurally resembles the cellular Upf1 helicase, suggesting that nidoviruses may also use their helicases for post-transcriptional quality control of their large RNA genomes.


Assuntos
Equartevirus/enzimologia , RNA Helicases/química , Proteínas Virais/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , DNA/metabolismo , Modelos Moleculares , Degradação do RNAm Mediada por Códon sem Sentido , Estrutura Terciária de Proteína , RNA Helicases/genética , RNA Helicases/metabolismo , Deleção de Sequência , Proteínas Virais/genética , Proteínas Virais/metabolismo , Zinco/química
16.
J Virol ; 88(5): 2810-20, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352469

RESUMO

UNLABELLED: Atypical porcine reproductive and respiratory syndrome (PRRS) caused by highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) is characterized by high fever and high mortality. However, the mechanism underlying the fever induction is still unknown. Prostaglandin E2 (PGE2), synthesized by cyclooxygenase type 1/2 (COX-1/2) enzymes, is essential for inducing fever. In this study, we found that PGE2, together with COX-1, was significantly elevated by HP-PRRSV. We subsequently demonstrated that extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphorylated ERK (p-ERK) were the key nodes to trigger COX-1 expression after HP-PRRSV infection. Furthermore, we proved the direct binding of p-C/EBP-ß to the COX-1 promoter by luciferase reporter and chromatin immunoprecipitation assays. In addition, silencing of C/EBP-ß remarkably impaired the enhancement of COX-1 production induced by HP-PRRSV infection. Taken together, our results indicate that HP-PPRSV elicits the expression of COX-1 through the ERK1/2-p-C/EBP-ß signaling pathway, resulting in the increase of PGE2, which might be the cause of high fever in infected pigs. Our findings might provide new insights into the molecular mechanisms underlying the pathogenesis of HP-PRRSV infection. IMPORTANCE: The atypical PRRS caused by HP-PRRSV was characterized by high fever, high morbidity, and high mortality in pigs of all ages, yet how HP-PRRSV induces high fever in pigs remains unknown. In the present study, we found out that HP-PRRSV infection could increase PGE2 production by upregulation of COX-1, and we subsequently characterized the underlying mechanisms about how HP-PRRSV enhances COX-1 production. PGE2 plays a critical role in inducing high temperature in hosts during pathogen infections. Thus, our findings here could help us have a better understanding of HP-PRRSV pathogenesis.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Ciclo-Oxigenase 1/metabolismo , Dinoprostona/biossíntese , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Transdução de Sinais , Animais , Sequência de Bases , Clonagem Molecular , Ciclo-Oxigenase 1/genética , Dados de Sequência Molecular , Fosforilação , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Regiões Promotoras Genéticas , Elementos de Resposta , Suínos
17.
J Virol ; 88(18): 10934-45, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25008936

RESUMO

UNLABELLED: Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious pathogen that causes severe diseases in pigs and great economic losses to the swine industry worldwide. Type I interferons (IFNs) play a crucial role in antiviral immunity. In the present study, we demonstrated that infection with the highly pathogenic PRRSV strain JXwn06 antagonized type I IFN expression induced by poly(I·C) in both porcine alveolar macrophages (PAMs) and blood monocyte-derived macrophages (BMo). Subsequently, we showed that the inhibition of poly(I·C)-induced IFN-ß production by PRRSV was dependent on the blocking of NF-κB signaling pathways. By screening PRRSV nonstructural and structural proteins, we demonstrated that nonstructural protein 4 (nsp4), a viral 3C-like serine protease, significantly suppressed IFN-ß expression. Moreover, we verified that nsp4 inhibited NF-κB activation induced by signaling molecules, including RIG-I, VISA, TRIF, and IKKß. nsp4 was shown to target the NF-κB essential modulator (NEMO) at the E349-S350 site to mediate its cleavage. Importantly, nsp4 mutants with defective protease activity abolished its ability to cleave NEMO and inhibit IFN-ß production. These findings might have implications for our understanding of PRRSV pathogenesis and its mechanisms for evading the host immune response. IMPORTANCE: Porcine reproductive and respiratory syndrome virus (PRRSV) is a major agent of respiratory diseases in pigs. Like many other viruses, PRRSV has evolved a variety of strategies to evade host antiviral innate immunity for survival and propagation. In this study, we show that PRRSV nsp4 is a novel antagonist of the NF-κB signaling pathway, which is responsible for regulating the expression of type I interferons and other crucial cytokines. We then investigated the underlying mechanism used by nsp4 to suppress NF-κB-mediated IFN-ß production. We found that nsp4 interfered with the NF-κB signaling pathway through the cleavage of NEMO (a key regulator of NF-κB signaling) at the E349-S350 site, leading to the downregulation of IFN-ß production induced by poly(I·C). The data presented here may help us to better understand PRRSV pathogenesis.


Assuntos
Interferon beta/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Regulação para Baixo , Interações Hospedeiro-Patógeno , Interferon beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/metabolismo , Macrófagos/virologia , NF-kappa B/genética , NF-kappa B/metabolismo , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Transdução de Sinais , Suínos , Proteínas não Estruturais Virais/genética
18.
J Virol ; 87(2): 1159-71, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23152505

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important viral pathogens in the swine industry. Emerging evidence indicates that the host microRNAs (miRNAs) are involved in host-pathogen interactions. However, whether host miRNAs can target PRRSV and be used to inhibit PRRSV infection has not been reported. Recently, microRNA 181 (miR-181) has been identified as a positive regulator of immune response, and here we report that miR-181 can directly impair PRRSV infection. Our results showed that delivered miR-181 mimics can strongly inhibit PRRSV replication in vitro through specifically binding to a highly (over 96%) conserved region in the downstream of open reading frame 4 (ORF4) of the viral genomic RNA. The inhibition of PRRSV replication was specific and dose dependent. In PRRSV-infected Marc-145 cells, the viral mRNAs could compete with miR-181-targeted sequence in luciferase vector to interact with miR-181 and result in less inhibition of luciferase activity, further demonstrating the specific interactions between miR-181 and PRRSV RNAs. As expected, miR-181 and other potential PRRSV-targeting miRNAs (such as miR-206) are expressed much more abundantly in minimally permissive cells or tissues than in highly permissive cells or tissues. Importantly, highly pathogenic PRRSV (HP-PRRSV) strain-infected pigs treated with miR-181 mimics showed substantially decreased viral loads in blood and relief from PRRSV-induced fever compared to negative-control (NC)-treated controls. These results indicate the important role of host miRNAs in modulating PRRSV infection and viral pathogenesis and also support the idea that host miRNAs could be useful for RNA interference (RNAi)-mediated antiviral therapeutic strategies.


Assuntos
MicroRNAs/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , RNA Viral/metabolismo , Replicação Viral , Animais , Linhagem Celular , MicroRNAs/genética , MicroRNAs/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , RNA Viral/genética , Suínos
19.
J Virol ; 87(15): 8808-12, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23740977

RESUMO

We previously showed that microRNA 181 (miR-181) can inhibit PRRSV replication by directly targeting its genomic RNA. Here, we report that miR-181 can downregulate the PRRSV receptor CD163 in blood monocytes and porcine alveolar macrophages (PAMs) through targeting the 3' untranslated region (UTR) of CD163 mRNA. Downregulation of CD163 leads to the inhibition of PRRSV entry into PAMs and subsequently suppresses PRRSV infection. Our findings indicate that delivery of miR-181 can be used as antiviral therapy against PRRSV infection.


Assuntos
MicroRNAs/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/crescimento & desenvolvimento , Receptores de Superfície Celular/antagonistas & inibidores , Receptores Virais/antagonistas & inibidores , Internalização do Vírus , Animais , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Macrófagos Alveolares/virologia , MicroRNAs/genética , Monócitos/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Receptores de Superfície Celular/genética , Receptores Virais/genética , Suínos
20.
J Virol ; 87(5): 2963-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23269805

RESUMO

H9N2 influenza viruses with an A316S substitution in hemagglutinin (HA) and a shorter neuraminidase (NA) stalk have become predominant in China. The A316S was shown to increase HA cleavage efficiency when combined with short stalk NA, and the short stalk NA improved NA enzyme activity and release of virus from erythrocytes. Single mutations or combinations of these mutations strengthened the virulence of H9N2 virus in chickens and mice.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H9N2/química , Vírus da Influenza A Subtipo H9N2/patogenicidade , Neuraminidase/química , Neuraminidase/genética , Infecções por Orthomyxoviridae/virologia , Substituição de Aminoácidos , Animais , Embrião de Galinha , Galinhas , Cães , Eritrócitos/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H9N2/genética , Células Madin Darby de Rim Canino , Camundongos , Mutação , Neuraminidase/metabolismo , Doenças das Aves Domésticas/virologia , Liberação de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA