Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Parasitol ; 38(5): 527-39, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17977543

RESUMO

Microtubules are cytoskeletal polymers containing repeating alpha/beta-tubulin heterodimers and are found in all eukaryotes including the malaria parasite Plasmodium falciparum. Diverse cellular functions such as chromosomal segregation, organelle transport and the determination of cell shape and motility are all dependent on microtubules. This essential role played by tubulin in cells is reflected in the effective use of anti-microtubule agents as fungicides, herbicides, anti-parasitic and anti-cancer agents. Plasmodium falciparum microtubules have been proposed as a potential antimalarial drug target and knowledge of their molecular composition and cellular architecture in blood-stage parasites is required to substantiate this premise. We report here that: (i) the two alpha-tubulin isotypes, alphaI- and alphaII-tubulin, are produced in both asexual and sexual blood-stage parasites, contrary to the previous report that alphaII-tubulin was specific to male gametocytes; (ii) tubulin production is highly stage-dependent in asexual parasites, reaching its maximum level in schizonts and segmenters and (iii) there is evidence of post-translational polyglutamylation of tubulin. The glutamylation of P. falciparum tubulins is the first reported post-translational modification of tubulin in this organism and was found only in the microtubule-organising centres and post-mitotic microtubular structures, suggesting possible roles for this modification in spindle pole body formation and merozoite biogenesis. Taken together, these findings form the basis for a better biological appreciation of P. falciparum microtubules and for the correct deployment of purified tubulins in the evaluation of microtubule inhibitors as potential antimalarial drugs.


Assuntos
Eritrócitos/parasitologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/biossíntese , Tubulina (Proteína)/biossíntese , Acetilação , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Peptídeos/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Ácido Poliglutâmico/metabolismo , Reação em Cadeia da Polimerase/métodos , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Tubulina (Proteína)/genética , Tubulina (Proteína)/imunologia , Tirosina/metabolismo
2.
J Mol Biol ; 400(2): 155-70, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20450918

RESUMO

The shark antigen-binding V(NAR) domain has the potential to provide an attractive alternative to traditional biotherapeutics based on its small size, advantageous physiochemical properties, and unusual ability to target clefts in enzymes or cell surface molecules. The V(NAR) shares many of the properties of the well-characterised single-domain camelid V(H)H but is much less understood at the molecular level. We chose the hen-egg-lysozyme-specific archetypal Type I V(NAR) 5A7 and used ribosome display in combination with error-prone mutagenesis to interrogate the entire sequence space. We found a high level of mutational plasticity across the V(NAR) domain, particularly within the framework 2 and hypervariable region 2 regions. A number of residues important for affinity were identified, and a triple mutant combining A1D, S61R, and G62R resulted in a K(D) of 460 pM for hen egg lysozyme, a 20-fold improvement over wild-type 5A7, and the highest K(D) yet reported for V(NAR)-antigen interactions. These findings were rationalised using structural modelling and indicate the importance of residues outside the classical complementarity determining regions in making novel antigen contacts that modulate affinity. We also located two solvent-exposed residues (G15 and G42), distant from the V(NAR) paratope, which retain function upon mutation to cysteine and have the potential to be exploited as sites for targeted covalent modification. Our findings with 5A7 were extended to all known NAR structures using an in-depth bioinformatic analysis of sequence data available in the literature and a newly generated V(NAR) database. This study allowed us to identify, for the first time, both V(NAR)-specific and V(NAR)/Ig V(L)/TCR V(alpha) overlapping hallmark residues, which are critical for the structural and functional integrity of the single domain. Intriguingly, each of our designated V(NAR)-specific hallmarks align precisely with previously defined mutational 'cold spots' in natural nurse shark cDNA sequences. These findings will aid future V(NAR) engineering and optimisation studies towards the development of V(NAR) single-domain proteins as viable biotherapeutics.


Assuntos
Afinidade de Anticorpos , Mineração de Dados , Região Variável de Imunoglobulina , Biblioteca de Peptídeos , Conformação Proteica , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Galinhas , Cisteína/metabolismo , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Modelos Moleculares , Dados de Sequência Molecular , Muramidase/imunologia , Mutação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência , Tubarões/genética , Tubarões/imunologia
3.
J Antimicrob Chemother ; 51(4): 833-41, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12654761

RESUMO

Microtubule inhibitors from several chemical classes can block the growth and development of malarial parasites, reflecting the importance of microtubules in various essential parasite functions. With the spread of antimalarial drug resistance, there is an urgent need for new approaches to the chemotherapy of this devastating disease. We investigated the effects of two naturally occurring marine peptides, dolastatin 10 and dolastatin 15, and 10 synthetic dolastatin 10-based compounds (auristatins), on cultured malarial parasites of the species most lethal to humans, Plasmodium falciparum. Dolastatin 10 was a more potent inhibitor of P. falciparum than any other previously described microtubule inhibitor, with a median inhibitory concentration (IC50) of 10-10 M. Dolastatin 15 was less active, and compounds of the auristatin series had various potencies. Comparison of the concentrations required to inhibit P. falciparum and mammalian cell proliferation showed that the orders of potency were not the same. Dolastatin 10 and auristatin PE caused arrested nuclear division and apparent disassembly of mitotic microtubular structures in the parasite. The effects of these agents were, superficially at least, similar to those of vinblastine but different from those of paclitaxel. These studies indicate that compounds binding in the 'Vinca domain' of tubulin can be highly potent antimalarial agents.


Assuntos
Antimaláricos , Antineoplásicos/farmacologia , Oligopeptídeos/farmacologia , Peptídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Depsipeptídeos , Relação Dose-Resposta a Droga , Humanos , Cinética , Microscopia de Fluorescência , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Mitose/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/ultraestrutura , Vimblastina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA