Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1424374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966641

RESUMO

At the beginning of the COVID-19 pandemic those with underlying chronic lung conditions, including tuberculosis (TB), were hypothesized to be at higher risk of severe COVID-19 disease. However, there is inconclusive clinical and preclinical data to confirm the specific risk SARS-CoV-2 poses for the millions of individuals infected with Mycobacterium tuberculosis (M.tb). We and others have found that compared to singly infected mice, mice co-infected with M.tb and SARS-CoV-2 leads to reduced SARS-CoV-2 severity compared to mice infected with SARS-CoV-2 alone. Consequently, there is a large interest in identifying the molecular mechanisms responsible for the reduced SARS-CoV-2 infection severity observed in M.tb and SARS-CoV-2 co-infection. To address this, we conducted a comprehensive characterization of a co-infection model and performed mechanistic in vitro modeling to dynamically assess how the innate immune response induced by M.tb restricts viral replication. Our study has successfully identified several cytokines that induce the upregulation of anti-viral genes in lung epithelial cells, thereby providing protection prior to challenge with SARS-CoV-2. In conclusion, our study offers a comprehensive understanding of the key pathways induced by an existing bacterial infection that effectively restricts SARS-CoV-2 activity and identifies candidate therapeutic targets for SARS-CoV-2 infection.


Assuntos
COVID-19 , Coinfecção , Imunidade Inata , Mycobacterium tuberculosis , SARS-CoV-2 , COVID-19/imunologia , Animais , Mycobacterium tuberculosis/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Camundongos , Coinfecção/imunologia , Humanos , Tuberculose/imunologia , Tuberculose/microbiologia , Citocinas/metabolismo , Citocinas/imunologia , Modelos Animais de Doenças , Índice de Gravidade de Doença , Pulmão/imunologia , Pulmão/virologia , Pulmão/microbiologia , Pulmão/patologia , Replicação Viral , Camundongos Endogâmicos C57BL , Feminino
2.
Tuberculosis (Edinb) ; 138: 102302, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586154

RESUMO

Prophylactic efficacy of two different delivery platforms for vaccination against Mycobacterium avium (M. avium) were tested in this study; a subunit and an RNA-based vaccine. The vaccine antigen, ID91, includes four mycobacterial antigens: Rv3619, Rv2389, Rv3478, and Rv1886. We have shown that ID91+GLA-SE is effective against a clinical NTM isolate, M. avium 2-151 smt. Here, we extend these results and show that a heterologous prime/boost strategy with a repRNA-ID91 (replicon RNA) followed by protein ID91+GLA-SE boost is superior to the subunit protein vaccine given as a homologous prime/boost regimen. The repRNA-ID91/ID91+GLA-SE heterologous regimen elicited a higher polyfunctional CD4+ TH1 immune response when compared to the homologous protein prime/boost regimen. More significantly, among all the vaccine regimens tested only repRNA-ID91/ID91+GLA-SE induced IFN-γ and TNF-secreting CD8+ T cells. Furthermore, the repRNA-ID91/ID91+GLA-SE vaccine strategy elicited high systemic proinflammatory cytokine responses and induced strong ID91 and an Ag85B-specific humoral antibody response a pre- and post-challenge with M. avium 2-151 smt. Finally, while all prophylactic prime/boost vaccine regimens elicited a degree of protection in beige mice, the heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen provided greater pulmonary protection than the homologous protein prime/boost regimen. These data indicate that a prophylactic heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen augments immunogenicity and confers protection against M. avium.


Assuntos
Mycobacterium tuberculosis , Vacinas de DNA , Animais , Camundongos , Linfócitos T CD8-Positivos , Mycobacterium avium/metabolismo , Mycobacterium tuberculosis/genética , Vacinação/métodos , Citocinas/metabolismo , Imunização Secundária/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA