Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nucleic Acids Res ; 50(22): 12938-12950, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36511856

RESUMO

Genetic interventions on microbiomes, for clinical or biotechnological purposes, remain challenging. Conjugation-based delivery of genetic cargo is still unspecific and limited by low conjugation rates. Here we report an approach to overcome these problems, based on a synthetic bacterial adhesion system. Mating assemblers consist on a synthetic adhesion formed by the expression on the surface of donor and target cells of specific nanobodies (Nb) and their cognate antigen (Ag). The Nb-Ag bridge increased 1-3 logs transfer of a variety of plasmids, especially in liquid media, confirming that cell-cell docking is a main determinant limiting mating efficiency. Synthetic cell-to-cell adhesion allows efficient conjugation to targeted recipients, enhancing delivery of desired genes to a predefined subset of prey species, or even specific pathogenic strains such as enterohemorrhagic Escherichia coli (EHEC), within a bacterial community. The synthetic conjugation enhancer presented here optimizes plasmid delivery by selecting the target hosts with high selectivity.


Assuntos
Conjugação Genética , Técnicas Genéticas , Microbiota , Adesão Celular , Conjugação Genética/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Plasmídeos/genética , Biotecnologia/métodos , Microbiota/genética
2.
PLoS Biol ; 18(12): e3000986, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33378358

RESUMO

Clustering of the enteropathogenic Escherichia coli (EPEC) type III secretion system (T3SS) effector translocated intimin receptor (Tir) by intimin leads to actin polymerisation and pyroptotic cell death in macrophages. The effect of Tir clustering on the viability of EPEC-infected intestinal epithelial cells (IECs) is unknown. We show that EPEC induces pyroptosis in IECs in a Tir-dependent but actin polymerisation-independent manner, which was enhanced by priming with interferon gamma (IFNγ). Mechanistically, Tir clustering triggers rapid Ca2+ influx, which induces lipopolysaccharide (LPS) internalisation, followed by activation of caspase-4 and pyroptosis. Knockdown of caspase-4 or gasdermin D (GSDMD), translocation of NleF, which blocks caspase-4 or chelation of extracellular Ca2+, inhibited EPEC-induced cell death. IEC lines with low endogenous abundance of GSDMD were resistant to Tir-induced cell death. Conversely, ATP-induced extracellular Ca2+ influx enhanced cell death, which confirmed the key regulatory role of Ca2+ in EPEC-induced pyroptosis. We reveal a novel mechanism through which infection with an extracellular pathogen leads to pyroptosis in IECs.


Assuntos
Cálcio/metabolismo , Proteínas de Escherichia coli/metabolismo , Piroptose/fisiologia , Receptores de Superfície Celular/metabolismo , Actinas/metabolismo , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/fisiologia , Análise por Conglomerados , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Células Epiteliais/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Células HeLa , Humanos , Mucosa Intestinal/metabolismo , Intestinos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Transporte Proteico , Receptores de Superfície Celular/fisiologia , Transdução de Sinais/fisiologia , Sistemas de Secreção Tipo III/metabolismo
3.
Nature ; 608(7922): 267-268, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948705
4.
Environ Res ; 216(Pt 2): 114611, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283441

RESUMO

While mercury (Hg) is a major concern in all aquatic environments because of its methylation and biomagnification pathways, very few studies consider Hg cycling in remote alpine lakes which are sensitive ecosystems. Nineteen high-altitude pristine lakes from Western/Central Pyrenees were investigated on both northern (France) and southern (Spain) slopes (1620-2600 m asl.). Subsurface water samples were collected in June 2017/2018/2019 and October 2017/2018 for Hg speciation analysis of inorganic mercury (iHg(II)), monomethylmercury (MMHg), and dissolved gaseous mercury (DGM) to investigate spatial and seasonal variations. In June 2018/2019 and October 2018, more comprehensive studies were performed in four lakes by taking water column depth profiles. Besides, in-situ incubation experiments using isotopically enriched Hg species (199iHg(II), 201MMHg) were conducted to investigate Hg transformation mechanisms in the water column. While iHg(II) (0.08-1.10 ng L-1 in filtered samples; 0.11-1.19 ng L-1 in unfiltered samples) did not show significant seasonal variations in the subsurface water samples, MMHg (<0.03-0.035 ng L-1 in filtered samples; <0.03-0.062 ng L-1 in unfiltered samples) was significantly higher in October 2018, mainly because of in-situ methylation. DGM (0.02-0.68 ng L-1) varies strongly and can exhibit higher levels in comparison with other pristine areas. Depth profiles and incubation experiments highlighted the importance of in-situ biotic methylation triggered by anoxic conditions in bottom waters. In-situ incubations confirm that significant methylation, demethylation and photoreduction extents are taking place in the water columns. Overall, drastic environmental changes occurring daily and seasonally in alpine lakes are providing conditions that can both promote Hg methylation (stratified anoxic waters) and MMHg photodemethylation (intense UV light). In addition, light induced photoreduction is a major pathway controlling significant gaseous Hg evasion. Global warming and potential eutrophication may thus have direct implications on Hg turnover and MMHg burden in those remote ecosystems.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Mercúrio/análise , Lagos , Ecossistema , Monitoramento Ambiental , Altitude , Poluentes Químicos da Água/análise , Gases/análise , Água/análise , Compostos de Metilmercúrio/análise
5.
Microb Cell Fact ; 21(1): 133, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780105

RESUMO

BACKGROUND: Bacterial type III secretion systems (T3SSs) assemble a multiprotein complex termed the injectisome, which acts as a molecular syringe for translocation of specific effector proteins into the cytoplasm of host cells. The use of injectisomes for delivery of therapeutic proteins into mammalian cells is attractive for biomedical applications. With that aim, we previously generated a non-pathogenic Escherichia coli strain, called Synthetic Injector E. coli (SIEC), which assembles functional injectisomes from enteropathogenic E. coli (EPEC). The assembly of injectisomes in EPEC is assisted by the lytic transglycosylase EtgA, which degrades the peptidoglycan layer. As SIEC lacks EtgA, we investigated whether expression of this transglycosylase enhances the protein translocation capacity of the engineered bacterium. RESULTS: The etgA gene from EPEC was integrated into the SIEC chromosome under the control of the inducible tac promoter, generating the strain SIEC-eEtgA. The controlled expression of EtgA had no effect on the growth or viability of bacteria. Upon induction, injectisome assembly was ~ 30% greater in SIEC-eEtgA than in the parental strain, as determined by the level of T3SS translocon proteins, the hemolytic activity of the bacterial strain, and the impairment in flagellar motility. The functionality of SIEC-eEtgA injectisomes was evaluated in a derivative strain carrying a synthetic operon (eLEE5), which was capable of delivering Tir effector protein into the cytoplasm of HeLa cells triggering F-actin polymerization beneath the attached bacterium. Lastly, using ß-lactamase as a reporter of T3SS-protein injection, we determined that the protein translocation capacity was ~ 65% higher in the SIEC-EtgA strain than in the parental SIEC strain. CONCLUSIONS: We demonstrate that EtgA enhances the assembly of functional injectisomes in a synthetic injector E. coli strain, enabling the translocation of greater amounts of proteins into the cytoplasm of mammalian cells. Accordingly, EtgA expression may boost the protein translocation of SIEC strains programmed as living biotherapeutics.


Assuntos
Engenharia Celular , Escherichia coli Enteropatogênica , Proteínas de Escherichia coli , Glicosiltransferases , Engenharia Celular/métodos , Escherichia coli Enteropatogênica/química , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicosiltransferases/metabolismo , Células HeLa , Humanos , Transporte Proteico
6.
PLoS Pathog ; 15(8): e1008031, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31465434

RESUMO

Enterohemorrhagic E. coli (EHEC) is a human intestinal pathogen that causes hemorrhagic colitis and hemolytic uremic syndrome. No vaccines or specific therapies are currently available to prevent or treat these infections. EHEC tightly attaches to the intestinal epithelium by injecting the intimin receptor Tir into the host cell via a type III secretion system (T3SS). In this project, we identified a camelid single domain antibody (nanobody), named TD4, that recognizes a conserved Tir epitope overlapping the binding site of its natural ligand intimin with high affinity and stability. We show that TD4 inhibits attachment of EHEC to cultured human HeLa cells by preventing Tir clustering by intimin, activation of downstream actin polymerization and pedestal formation. Furthermore, we demonstrate that TD4 significantly reduces EHEC adherence to human colonic mucosa in in vitro organ cultures. Altogether, these results suggest that nanobody-based therapies hold potential in the development of much needed treatment and prevention strategies against EHEC infection.


Assuntos
Aderência Bacteriana/fisiologia , Colo/metabolismo , Escherichia coli Êntero-Hemorrágica/fisiologia , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Receptores de Superfície Celular/antagonistas & inibidores , Anticorpos de Domínio Único/farmacologia , Sequência de Aminoácidos , Animais , Aderência Bacteriana/efeitos dos fármacos , Sítios de Ligação , Camelus , Colo/microbiologia , Colo/patologia , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/imunologia , Proteínas de Escherichia coli/metabolismo , Células HeLa , Humanos , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Homologia de Sequência , Anticorpos de Domínio Único/imunologia
7.
PLoS Pathog ; 13(10): e1006706, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29084270

RESUMO

Enteropathogenic E. coli (EPEC) is a human pathogen that causes acute and chronic pediatric diarrhea. The hallmark of EPEC infection is the formation of attaching and effacing (A/E) lesions in the intestinal epithelium. Formation of A/E lesions is mediated by genes located on the pathogenicity island locus of enterocyte effacement (LEE), which encode the adhesin intimin, a type III secretion system (T3SS) and six effectors, including the essential translocated intimin receptor (Tir). Seventeen additional effectors are encoded by genes located outside the LEE, in insertion elements and prophages. Here, using a stepwise approach, we generated an EPEC mutant lacking the entire effector genes (EPEC0) and intermediate mutants. We show that EPEC0 contains a functional T3SS. An EPEC mutant expressing intimin but lacking all the LEE effectors but Tir (EPEC1) was able to trigger robust actin polymerization in HeLa cells and mucin-producing intestinal LS174T cells. However, EPEC1 was unable to form A/E lesions on human intestinal in vitro organ cultures (IVOC). Screening the intermediate mutants for genes involved in A/E lesion formation on IVOC revealed that strains lacking non-LEE effector/s have a marginal ability to form A/E lesions. Furthermore, we found that Efa1/LifA proteins are important for A/E lesion formation efficiency in EPEC strains lacking multiple effectors. Taken together, these results demonstrate the intricate relationships between T3SS effectors and the essential role non-LEE effectors play in A/E lesion formation on mucosal surfaces.


Assuntos
Adesinas Bacterianas/metabolismo , Enterócitos/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Mucosa Intestinal/microbiologia , Adesinas Bacterianas/genética , Proteínas de Transporte/metabolismo , Ilhas Genômicas , Humanos , Mucosa Intestinal/metabolismo
8.
Microb Cell Fact ; 18(1): 47, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30857538

RESUMO

BACKGROUND: The hemolysin (Hly) secretion system of E. coli allows the one-step translocation of hemolysin A (HlyA) from the bacterial cytoplasm to the extracellular medium, without a periplasmic intermediate. In this work, we investigate whether the Hly secretion system of E. coli is competent to secrete a repertoire of functional single-domain VHH antibodies (nanobodies, Nbs), facilitating direct screening of VHH libraries and the purification of selected Nb from the extracellular medium. RESULTS: We employed a phagemid library of VHHs obtained by immunization of a dromedary with three protein antigens from enterohemorrhagic E. coli (EHEC), namely, the extracellular secreted protein A (EspA), the extracellular C-terminal region of Intimin (Int280), and the translocated intimin receptor middle domain (TirM). VHH clones binding each antigen were enriched and amplified by biopanning, and subsequently fused to the C-terminal secretion signal of HlyA to be expressed and secreted in a E. coli strain carrying the Hly export machinery (HlyB, HlyD and TolC). Individual E. coli clones were grown and induced in 96-well microtiter plates, and the supernatants of the producing cultures directly used in ELISA for detection of Nbs binding EspA, Int280 and TirM. A set of Nb sequences specifically binding each of these antigens were identified, indicating that the Hly system is able to secrete a diversity of functional Nbs. We performed thiol alkylation assays demonstrating that Nbs are correctly oxidized upon secretion, forming disulphide bonds between cysteine pairs despite the absence of a periplasmic intermediate. In addition, we show that the secreted Nb-HlyA fusions can be directly purified from the supernatant of E. coli cultures, avoiding cell lysis and in a single affinity chromatography step. CONCLUSIONS: Our data demonstrate the Hly secretion system of E. coli can be used as an expression platform for screening and purification of Nb binders from VHH repertories.


Assuntos
Meios de Cultura/análise , Escherichia coli/fisiologia , Proteínas Hemolisinas/metabolismo , Anticorpos de Domínio Único/isolamento & purificação , Transporte Biológico , Escherichia coli/imunologia
9.
Anal Chem ; 90(20): 12314-12321, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30284810

RESUMO

Many pathogens use host glycans as docking points for adhesion. Therefore, the use of compounds blocking carbohydrate-binding adhesins is a promising strategy for fighting infections. In this work, we describe a simple and rapid microarray approach for assessing the bacterial adhesion and efficiency of antiadhesive compounds targeting uropathogenic Escherichia coli UTI89, which displays mannose-specific adhesin FimH at the tip of fimbriae. The approach consisted in direct detection of live fluorescently labeled bacteria bound to mannan printed onto microarray slides. The utility of the arrays for binding/inhibition assays was first validated by comparing array-derived results for the model mannose-binding lectin concanavalin A with data obtained by isothermal titration calorimetry. Growth phase-dependent binding of UTI89 to the arrays was observed, proving the usefulness of the setup for detecting differences in FimH expression. Importantly, bacteria labeling and binding assays entailed minimal manipulation, helping to preserve the integrity of fimbriae. The efficiency of three different dodecamannosylated fullerenes as FimH-targeted antiadhesives was next evaluated in competition assays. The results revealed a superior activity of the mannofullerenes (5- to 18-fold per mannose residue) over methyl α-d-mannopyranoside. Moreover, differences in activity were detected for mannofullerenes differing in the structure/length of the spacer used for grafting mannose onto the fullerene core, further demonstrating the sensitivity of the assay. Overall, the approach combines straightforward and time-saving protocols for microarray preparation, bacteria labeling, and binding assays, and it can be easily tailored to other bacteria bearing carbohydrate-binding adhesins.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Fulerenos/farmacologia , Análise em Microsséries , Escherichia coli Uropatogênica/efeitos dos fármacos , Calorimetria , Concanavalina A/antagonistas & inibidores , Fímbrias Bacterianas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Escherichia coli Uropatogênica/crescimento & desenvolvimento
10.
Microb Biotechnol ; 17(1): e14367, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971317

RESUMO

Large gene libraries are frequently created in Escherichia coli plasmids, which can induce cell toxicity and expression instability due to the high gene dosage. To address these limitations, gene libraries can be integrated in a single copy into the bacterial chromosome. Here, we describe an efficient system for the massive integration (MAIN) of large gene libraries in the E. coli chromosome that generates in-frame gene fusions that are expressed stably. MAIN uses a thermosensitive integrative plasmid that is linearized in vivo to promote extensive integration of the gene library via homologous recombination. Positive and negative selections efficiently remove bacteria lacking gene integration in the target site. We tested MAIN with a library of 107 VHH genes that encode nanobodies (Nbs). The integration of VHH genes into a custom target locus of the E. coli chromosome enabled stable expression and surface display of the Nbs. Next-generation DNA sequencing confirmed that MAIN preserved the diversity of the gene library after integration. Finally, we screened the integrated library to select Nbs that bind a specific antigen using magnetic and fluorescence-activated cell sorting. This allowed us to identify Nbs binding the epidermal growth factor receptor that were not previously isolated in a similar screening of a multicopy plasmid library. Our results demonstrate that MAIN enables large gene library integration into the E. coli chromosome, creating stably expressed in-frame fusions for functional screening.


Assuntos
DNA , Escherichia coli , Escherichia coli/genética , Plasmídeos , Biblioteca Gênica , Cromossomos Bacterianos
11.
Microb Biotechnol ; 17(1): e14328, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37608576

RESUMO

Biosafety of engineered bacteria as living therapeutics requires a tight regulation to control the specific delivery of protein effectors, maintaining minimum leakiness in the uninduced (OFF) state and efficient expression in the induced (ON) state. Here, we report a three repressors (3R) genetic circuit that tightly regulates the expression of multiple tac promoters (Ptac) integrated in the chromosome of E. coli and drives the expression of a complex type III secretion system injectisome for therapeutic protein delivery. The 3R genetic switch is based on the tetracycline repressor (TetR), the non-inducible lambda repressor cI (ind-) and a mutant lac repressor (LacIW220F ) with higher activity. The 3R switch was optimized with different protein translation and degradation signals that control the levels of LacIW220F . We demonstrate the ability of an optimized switch to fully repress the strong leakiness of the Ptac promoters in the OFF state while triggering their efficient activation in the ON state with anhydrotetracycline (aTc), an inducer suitable for in vivo use. The implementation of the optimized 3R switch in the engineered synthetic injector E. coli (SIEC) strain boosts expression of injectisomes upon aTc induction, while maintaining a silent OFF state that preserves normal growth in the absence of the inducer. Since Ptac is a commonly used promoter, the 3R switch may have multiple applications for tight control of protein expression in E. coli. In addition, the modularity of the 3R switch may enable its tuning for the control of Ptac promoters with different inducers.


Assuntos
Compostos Bicíclicos com Pontes , Escherichia coli , Tiadiazóis , Escherichia coli/genética , Escherichia coli/metabolismo , Regiões Promotoras Genéticas , Compostos Bicíclicos com Pontes/metabolismo , Repressores Lac/genética , Repressores Lac/metabolismo
12.
Breast Cancer Res ; 15(6): R116, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24330716

RESUMO

INTRODUCTION: Aberrant turnover of the actin cytoskeleton is intimately associated with cancer cell migration and invasion. Frequently however, evidence is circumstantial, and a reliable assessment of the therapeutic significance of a gene product is offset by lack of inhibitors that target biologic properties of a protein, as most conventional drugs do, instead of the corresponding gene. Proteomic studies have demonstrated overexpression of CapG, a constituent of the actin cytoskeleton, in breast cancer. Indirect evidence suggests that CapG is involved in tumor cell dissemination and metastasis. In this study, we used llama-derived CapG single-domain antibodies or nanobodies in a breast cancer metastasis model to address whether inhibition of CapG activity holds therapeutic merit. METHODS: We raised single-domain antibodies (nanobodies) against human CapG and used these as intrabodies (immunomodulation) after lentiviral transduction of breast cancer cells. Functional characterization of nanobodies was performed to identify which biochemical properties of CapG are perturbed. Orthotopic and tail vein in vivo models of metastasis in nude mice were used to assess cancer cell spreading. RESULTS: With G-actin and F-actin binding assays, we identified a CapG nanobody that binds with nanomolar affinity to the first CapG domain. Consequently, CapG interaction with actin monomers or actin filaments is blocked. Intracellular delocalization experiments demonstrated that the nanobody interacts with CapG in the cytoplasmic environment. Expression of the nanobody in breast cancer cells restrained cell migration and Matrigel invasion. Notably, the nanobody prevented formation of lung metastatic lesions in orthotopic xenograft and tail-vein models of metastasis in immunodeficient mice. We showed that CapG nanobodies can be delivered into cancer cells by using bacteria harboring a type III protein secretion system (T3SS). CONCLUSIONS: CapG inhibition strongly reduces breast cancer metastasis. A nanobody-based approach offers a fast track for gauging the therapeutic merit of drug targets. Mapping of the nanobody-CapG interface may provide a platform for rational design of pharmacologic compounds.


Assuntos
Actinas/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proteínas dos Microfilamentos/imunologia , Terapia de Alvo Molecular/métodos , Proteínas Nucleares/imunologia , Anticorpos de Domínio Único/farmacologia , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Escherichia coli/genética , Feminino , Humanos , Camundongos SCID , Proteínas dos Microfilamentos/genética , Proteínas Nucleares/genética , Estrutura Terciária de Proteína
13.
Protein Expr Purif ; 91(1): 42-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23856605

RESUMO

Nanobodies (Nbs) are single domain antibodies based on the variable domains of heavy chain only antibodies (HCAbs) found in camelids, also referred to as VHHs. Their small size (ca. 12-15kDa), superior biophysical and antigen binding properties have made Nbs very attractive molecules for multiple biotechnological applications, including human therapy. The most widely used system for the purification of Nbs is their expression in the periplasm of Escherichia coli with a C-terminal hexa-histidine (His6) tag followed by immobilized metal affinity chromatography (IMAC). However, significant variability in the expression levels of different Nbs are routinely observed and a single affinity chromatography step is often not sufficient to obtain Nbs of high purity. Here, we report an alternative method for expression and purification of Nbs from the periplasm of E. coli based on their fusion to maltose binding protein (MBP) in the N-terminus and His6 tag in the C-terminus (MBP-NbHis6). Soluble MBP-NbHis6 fusions were consistently expressed at high levels (⩾12mg/L of induced culture in shake flasks) in the periplasm of E. coli HM140, a strain deficient in several periplasmic proteases. Highly pure MBP-NbHis6 fusions and free NbHis6 (after site specific proteolysis of the fusions), were recovered by amylose and metal affinity chromatography steps. The monomeric nature of the purified NbHis6 was determined by gel filtration chromatography. Lastly, we demonstrated by ELISA that both monomeric NbHis6 and MBP-NbHis6 fusions retained antigen binding activity and specificity, thus facilitating their direct use in antigen recognition assays.


Assuntos
Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli/química , Proteínas Periplásmicas de Ligação/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Anticorpos de Domínio Único/isolamento & purificação , Sequência de Aminoácidos , Antígenos/química , Antígenos/metabolismo , Sequência de Bases , Cromatografia de Afinidade/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Histidina/genética , Histidina/metabolismo , Dados de Sequência Molecular , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo
14.
Anal Bioanal Chem ; 402(9): 2897-907, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22286125

RESUMO

Membrane-assisted solvent extraction coupled to large volume injection in a programmable temperature vaporisation injector using gas chromatography­mass spectrometry analysis was optimised for the simultaneous determination of a variety of endocrine disrupting compounds in environmental water samples (estuarine, river and wastewater). Among the analytes studied, certain hormones, alkylphenols and bisphenol A were included. The nature of membranes, extraction solvent, extraction temperature, solvent volume, extraction time, ionic strength and methanol addition were evaluated during the optimisation of the extraction. Matrix effects during the extraction step were studied in different environmental water samples: estuarine water, river water and wastewater (influent and effluent). Strong matrix effects were observed for most of the compounds in influent and effluent samples. Different approaches were studied in order to correct or minimise matrix effects, which included the use of deuterated analogues, matrix-matched calibration, standard addition calibration, dilution of the sample and clean-up of the extract using solid-phase extraction (SPE). The use of deuterated analogues corrected satisfactorily matrix effect for estuarine and effluent samples for most of the compounds. However, in the case of influent samples, standard addition calibration and dilution of the sample were the best approaches. The SPE clean-up provided similar recoveries to those obtained after correction with the corresponding deuterated analogue but better chromatographic signal was obtained in the case of effluent samples. Method detection limits in the 5-54 ng L(-1) range and precision, calculated as relative standard deviation, in the 2-25% range were obtained.


Assuntos
Disruptores Endócrinos/química , Disruptores Endócrinos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Estrutura Molecular , Extração em Fase Sólida/instrumentação
15.
Microb Biotechnol ; 15(5): 1374-1391, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34755474

RESUMO

The probiotic strain Escherichia coli Nissle 1917 (EcN) is a common bacterial chassis in synthetic biology developments for therapeutic applications given its long track record of safe administration in humans. Chromosomal integration of the genes of interest (GOIs) in the engineered bacterium offers significant advantages in genetic stability and to control gene dose, but common methodologies relying on the transformation of EcN are inefficient. In this work, we implement in EcN the use of bacterial conjugation in combination with markerless genome engineering to efficiently insert multiple GOIs at different loci of EcN chromosome, leaving no antibiotic resistance genes, vector sequences or scars in the modified bacterium. The resolution of cointegrants that leads to markerless insertion of the GOIs requires expression of I-SceI endonuclease and its efficiency is enhanced by λ Red proteins. We show the potential of this strategy by integrating different genes encoding fluorescent and bioluminescent reporters (i.e. GFP, mKate2, luxCDABE) both individually and sequentially. We also demonstrate its application for gene deletions in EcN (ΔflhDC) and to replace the endogenous regulation of chromosomal locus (i.e. flhDC) by heterologous regulatory elements (e.g. tetR-Ptet) in order to have an ectopic control of gene expression in EcN with an external inducer to alter bacterial behaviour (e.g. flagellar motility). Whole-genome sequencing confirmed the introduction of the designed modifications without off-target alterations in the genome. This straightforward approach accelerates the generation of multiple modifications in EcN chromosome for the generation of living bacterial therapeutics.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Probióticos , Cromossomos , Conjugação Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos
16.
Microb Biotechnol ; 15(9): 2309-2323, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35695013

RESUMO

The ability of T7 RNA polymerase (RNAPT7 ) fusions to cytosine deaminases (CdA) for entering C➔T changes in any DNA segment downstream of a T7 promoter was exploited for hyperdiversification of defined genomic portions of Pseudomonas putida KT2440. To this end, test strains were constructed in which the chromosomally encoded pyrF gene (the prokaryotic homologue of yeast URA3) was flanked by T7 transcription initiation and termination signals and also carried plasmids expressing constitutively either high-activity (lamprey's) or low-activity (rat's) CdA-RNAPT7 fusions. The DNA segment-specific mutagenic action of these fusions was then tested in strains lacking or not uracil-DNA glycosylase (UDG), that is ∆ung/ung+ variants. The resulting diversification was measured by counting single nucleotide changes in clones resistant to 5-fluoroorotic acid (5FOA), which otherwise is transformed by wild-type PyrF into a toxic compound. Although the absence of UDG dramatically increased mutagenic rates with both CdA-RNAPT7 fusions, the most active variant - pmCDA1 - caused extensive appearance of 5FOA-resistant colonies in the wild-type strain not limited to C➔T but including also a range of other changes. Furthermore, the presence/absence of UDG activity swapped cytosine deamination preference between DNA strands. These qualities provided the basis of a robust system for continuous evolution of preset genomic portions of P. putida and beyond.


Assuntos
Evolução Molecular Direcionada , Genes Bacterianos , Mutagênese , Pseudomonas putida , Citosina/metabolismo , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Evolução Molecular Direcionada/métodos , Loci Gênicos , Genômica , Mutação , Plasmídeos/genética , Pseudomonas putida/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
17.
Environ Sci Process Impacts ; 24(9): 1430-1442, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35080575

RESUMO

The speciation of both redox reactive and volatile selenium (Se) compounds, barely reported in pristine aquatic environments, has never been investigated in remote alpine lakes, considered as sensitive ecosystems to detect the effect of global change. This work presents an integrated investigation on Se distribution and speciation conducted in 20 high altitude pristine lakes from the central-western Pyrenees. Five seasonal sampling campaigns were carried out after snowmelt (June/July) and in early fall (October) for the period 2017-2019. Concentrations of total dissolved Se (TDSe) ranged from 7 to 78 ng L-1, with selenate being ubiquitously observed in most cases (median of 61% of TDSe). Selenite was only occasionally detected up to 4 ng L-1, therefore a fraction of TDSe was presumably in the forms of elemental Se(0) and/or selenides. Depth profiles obtained in different lakes showed the occurrence of such Se(-II, 0) pools in bottom hypoxic to anoxic waters. The production of volatile Se compounds presented a low median total concentration (TVSe) of 33 pg L-1 (range 3-120 pg L-1), mainly in the form of dimethylselenide in subsurface samples (median of 82% of TVSe). The Se concentration in lake waters was significantly correlated with the sulphate concentration (ρ = 0.93, p < 0.0001), demonstrating that it is influenced by erosion and dissolution of Se and S-enriched parent bedrocks. In addition, for Se depleted alpine lake-bedrock systems, long-range transport and wet atmospheric depositions represent a major source of Se for lake waters.


Assuntos
Lagos , Selênio , Ecossistema , Ácido Selênico , Ácido Selenioso , Selênio/análise , Espanha , Sulfatos
18.
Front Immunol ; 13: 863831, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547740

RESUMO

The emergence of SARS-CoV-2 variants that escape from immune neutralization are challenging vaccines and antibodies developed to stop the COVID-19 pandemic. Thus, it is important to establish therapeutics directed toward multiple or specific SARS-CoV-2 variants. The envelope spike (S) glycoprotein of SARS-CoV-2 is the key target of neutralizing antibodies (Abs). We selected a panel of nine nanobodies (Nbs) from dromedary camels immunized with the receptor-binding domain (RBD) of the S, and engineered Nb fusions as humanized heavy chain Abs (hcAbs). Nbs and derived hcAbs bound with subnanomolar or picomolar affinities to the S and its RBD, and S-binding cross-competition clustered them in two different groups. Most of the hcAbs hindered RBD binding to its human ACE2 (hACE2) receptor, blocked cell entry of viruses pseudotyped with the S protein and neutralized SARS-CoV-2 infection in cell cultures. Four potent neutralizing hcAbs prevented the progression to lethal SARS-CoV-2 infection in hACE2-transgenic mice, demonstrating their therapeutic potential. Cryo-electron microscopy identified Nb binding epitopes in and out the receptor binding motif (RBM), and showed different ways to prevent virus binding to its cell entry receptor. The Nb binding modes were consistent with its recognition of SARS-CoV-2 RBD variants; mono and bispecific hcAbs efficiently bound all variants of concern except omicron, which emphasized the immune escape capacity of this latest variant.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Animais , Microscopia Crioeletrônica , Epitopos/química , Humanos , Camundongos , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
19.
Front Med (Lausanne) ; 9: 1058455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507540

RESUMO

Triple-negative breast cancer (TNBC) is characterized by aggressiveness and high rates of metastasis. The identification of relevant biomarkers is crucial to improve outcomes for TNBC patients. Membrane type 1-matrix metalloproteinase (MT1-MMP) could be a good candidate because its expression has been reported to correlate with tumor malignancy, progression and metastasis. Moreover, single-domain variable regions (VHHs or Nanobodies) derived from camelid heavy-chain-only antibodies have demonstrated improvements in tissue penetration and blood clearance, important characteristics for cancer imaging. Here, we have developed a nanobody-based PET imaging strategy for TNBC detection that targets MT1-MMP. A llama-derived library was screened against the catalytic domain of MT1-MMP and a panel of specific nanobodies were identified. After a deep characterization, two nanobodies were selected to be labeled with gallium-68 (68Ga). ImmunoPET imaging with both ([68Ga]Ga-NOTA-3TPA14 and [68Ga]Ga-NOTA-3CMP75) in a TNBC mouse model showed precise tumor-targeting capacity in vivo with high signal-to-background ratios. (68Ga)Ga-NOTA-3CMP75 exhibited higher tumor uptake compared to (68Ga)Ga-NOTA-3TPA14. Furthermore, imaging data correlated perfectly with the immunohistochemistry staining results. In conclusion, we found a promising candidate for nanobody-based PET imaging to be further investigated as a diagnostic tool in TNBC.

20.
J Bacteriol ; 193(19): 5222-30, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21784935

RESUMO

Fimbrial ushers are the largest ß-barrel outer membrane proteins (OMPs) known to date, which function in the polymerization of fimbriae and their translocation to the bacterial surface. Folding and assembly of these complex OMPs are not characterized. Here, we investigate the role of periplasmic chaperones (SurA, Skp, DegP, and FkpA) and individual components of the ß-barrel assembly machinery (BAM) complex (BamA, BamB, BamC, and BamE) in the folding of the Escherichia coli FimD usher. The FimD level is dramatically reduced (∼30-fold) in a surA null mutant, but a strong cell envelope stress is constitutively activated with upregulation of DegP (∼10-fold). To demonstrate a direct role of SurA, FimD folding was analyzed in a conditional surA mutant in which SurA expression was controlled. In this strain, FimD is depleted from bacteria in parallel to SurA without significant upregulation of DegP. Interestingly, the dependency on SurA is higher for FimD than for other OMPs. We also demonstrate that a functional BAM complex is needed for folding of FimD. In addition, FimD levels were strongly reduced (∼5-fold) in a mutant lacking the accessory lipoprotein BamB. The critical role of BamB for FimD folding was confirmed by complementation and BamB depletion experiments. Similar to SurA dependency, FimD showed a stronger dependency on BamB than OMPs. On the other hand, folding of FimD was only marginally affected in bamC and bamE mutants. Collectively, our results indicate that FimD usher follows the SurA-BamB pathway for its assembly. The preferential use of this pathway for the folding of OMPs with large ß-barrels is discussed.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Western Blotting , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas Ligadas a Lipídeos/genética , Proteínas Ligadas a Lipídeos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Peptidilprolil Isomerase/genética , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Ligação Proteica , Dobramento de Proteína , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA