Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Med Vet Entomol ; 37(4): 683-692, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37265439

RESUMO

Vector control is still the recommended approach to avoid arbovirus outbreaks. Herein, we investigate oviposition preferences of Aedes aegypti (Diptera: Culicidae) females under a semi-field structure Rio de Janeiro, Brazil. For that, in Experiment 1, we used two settings: 'Single items', which included as containers drain, beer bottle, bucket, car tyre, water tank, and a potted Peace Lily (Spathiphyllum wallisii) in a saucer with water, or 'Multiple containers', as an urban simulation, in which one drain, two additional beer bottles, and an extra plant pot saucer were added. Experiment 2 (sensory cues) used five variations of potted plant, each one varying in the range of sensory cues known to attract gravid females to oviposition containers. Our results indicate that gravid Ae. aegypti prefer to oviposit close to the ground and in open water containers with organic compounds from plant watering. Domestic large artificial containers containing tap water received significantly fewer eggs, except for the car tyre, which exhibited as many eggs as the potted plant. We also show that visual (potted plant shape) and olfactory clues (odour of the plant or from water containing organic matter) were equally attractive separately as were these stimuli together.


Assuntos
Aedes , Feminino , Animais , Oviposição , Mosquitos Vetores , Brasil , Água
2.
Pestic Biochem Physiol ; 174: 104802, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33838703

RESUMO

The beet armyworm, Spodoptera exigua, is a highly polyphagous pest originated from Southeast Asia but has spread globally, attacking economically important crops and fruits. Bistrifluron insecticide is one of the highly active insect growth regulators that has been reported to inhibit development and longevity in other lepidopteran species and could be used in the control of S. exigua. In the present study, the age-stage, two-sex life table technique was applied to assess the sublethal effects of bistrifluron on biological traits and vitellogenin gene (SeVg) expression when 2nd instar larvae fed to sublethal concentrations (LC10, LC20 and LC40) of bistrifluron. Mean generation time from eggs to adults was longer at LC40 (37.79 ± 0.81 d) and LC20 (37.04 ± 0.72) compared to the LC10 (36.89 ± 0.63 d) and control groups (36.07 ± 0.38 d). Fecundity of female at LC40 (279.17 ± 42.8 eggs), LC20 (347 ± 35.4 eggs) and LC10 (411.58 ± 42.38 eggs) were significantly lower than the control treatment (532.47 ± 7.13). Furthermore, the lower intrinsic rates of increase (LC40; r = 0.1207 ± 0.009, LC20; r = 0.1329 ± 0.009 and LC10; r = 0.14398 ± 0.009 compared to the control r = 0.164 ± 0.0076), was observed along with significantly extended mean generation times (LC40; T = 34.825 ± 0.317 days, LC20; T = 33.27 ± 0.368 days and LC10; T = 31.899 ± 0.398 days compared to the control 30.927 ± 0.255 days). Furthermore, the contents of energy reserve macronutrients (carbohydrate, lipid and protein) significantly reduced in dose and time dependent manner in treated insects as compared to control. Furthermore, the expression level of SeVg mRNA significantly decreased by 43.8% in the female adults when one-day-old second instar larvae were treated with sublethal concentrations of bistrifluron in comparison with the control. Documenting these sublethal effects is a vital, and often overlooked factor, in assessing the overall efficacy of insecticides in the management of pest populations.


Assuntos
Inseticidas , Vitelogeninas , Animais , Feminino , Hidrocarbonetos Halogenados , Inseticidas/toxicidade , Larva , Nutrientes , Compostos de Fenilureia , Spodoptera/genética , Vitelogeninas/genética
3.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638623

RESUMO

How herbivorous insects adapt to host plants is a key question in ecological and evolutionary biology. The fall armyworm, (FAW) Spodoptera frugiperda (J.E. Smith), although polyphagous and a major pest on various crops, has been reported to have a rice and corn (maize) feeding strain in its native range in the Americas. The species is highly invasive and has recently established in China. We compared behavioral changes in larvae and adults of a corn population (Corn) when selected on rice (Rice) and the molecular basis of these adaptational changes in midgut and antennae based on a comparative transcriptome analysis. Larvae of S. frugiperda reared on rice plants continuously for 20 generations exhibited strong feeding preference for with higher larval performance and pupal weight on rice than on maize plants. Similarly, females from the rice selected population laid significantly more eggs on rice as compared to females from maize population. The most highly expressed DEGs were shown in the midgut of Rice vs. Corn. A total of 6430 DEGs were identified between the populations mostly in genes related to digestion and detoxification. These results suggest that potential adaptations for feeding on rice crops, may contribute to the current rapid spread of fall armyworm on rice crops in China and potentially elsewhere. Consistently, highly expressed DEGs were also shown in antennae; a total of 5125 differentially expressed genes (DEGs) s were identified related to the expansions of major chemosensory genes family in Rice compared to the Corn feeding population. These results not only provide valuable insight into the molecular mechanisms in host plants adaptation of S. frugiperda but may provide new gene targets for the management of this pest.


Assuntos
Spodoptera/genética , Spodoptera/fisiologia , Adaptação Fisiológica/genética , Animais , China , Produtos Agrícolas/parasitologia , Fenômenos Fisiológicos do Sistema Digestório , Comportamento Alimentar/fisiologia , Feminino , Ontologia Genética , Genes de Insetos , Herbivoria/genética , Herbivoria/fisiologia , Adaptação ao Hospedeiro/genética , Adaptação ao Hospedeiro/fisiologia , Especificidade de Hospedeiro/genética , Especificidade de Hospedeiro/fisiologia , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/fisiologia , Larva/fisiologia , Masculino , Oryza/parasitologia , Oviposição/fisiologia , Spodoptera/patogenicidade , Transcriptoma , Zea mays/parasitologia
4.
Pestic Biochem Physiol ; 162: 6-14, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31836055

RESUMO

The beet armyworm (Spodoptera exigua) is a highly polyphagous agricultural pest that is distributed worldwide. However, the adaptive mechanisms of S. exigua for various insecticides and defensive substances in host plants are unknown. Insect P450 monooxygenases play an important role in the detoxification of plant toxins and insecticides, leading to insecticides resistance. We investigated the induced effects of xanthotoxin exposure on detoxification enzyme activity and larval tolerance to α-cypermethrin in S. exigua. Our results showed that the lethal concentration (LC50) of α-cypermethrin for xanthotoxin-exposed larvae was 2.1-fold higher than in the control. Moreover, cytochrome P450 enzyme activity was significantly elevated by upregulation of P450 genes in treated larvae. RT-qPCR results showed that CYP9A10 expression level was significantly increased in all treatments, while maximal expression level was observed in xanthotoxin+α-cypermethrin-fed larvae. RNAi-mediated silencing of CYP9A10 further increased mortality by 18%, 26% and 35% at 48 h and by 27%, 43% and 55% at 72 h when larvae were exposed to diets containing chemicals as compared to the control. The results show that CYP9A10 might play an important role in xanthotoxin and α-cypermethrin detoxification in S. exigua. RNAi-mediated silencing could provide an effective synergistic agent for pest control or insecticide resistance management.


Assuntos
Inseticidas , Metoxaleno , Animais , Sistema Enzimático do Citocromo P-450 , Larva , Piretrinas , Interferência de RNA , Spodoptera
5.
Pestic Biochem Physiol ; 155: 108-118, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30857620

RESUMO

The beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) is a highly polyphagous pest which causes considerable economic losses to cotton and many vegetable crops. Tannins are among the most important secondary metabolites in cotton plants. We show that tannic acid enhances the toxic effect of chlorantraniliprole on S. exigua when presented in combination. Bioassays using third-instar S. exigua larvae on an artificial diet showed that consumption of tannic acid with chlorantraniliprole at the concentration of (2 mg/g and LC50 0.018 mg/L) had higher toxicity when compared to either chlorantraniliprole or tannic acid alone (LC50 0.027 mg/L). The diet containing tannic acid with chlorantraniliprole significantly prolonged larval and pupal developmental time and extended mean generation time and total pre-oviposition period compared to either chemical alone. Moreover, fecundity, survival rate, reproductive value, intrinsic rate of increase, finite rate of increase and net reproduction rate declined significantly when exposed to the combined treatment. No difference was observed between tannic acid and the control. Meanwhile, tannic acid with chlorantraniliprole had markedly antifeedant effects; causing significant decline in the relative growth rate (RGR), the relative consumption rate (RCR), the efficiency of conversion of ingested food (ECI), the efficiency of conversion of digested food and an increase in the approximate digestibility (AD) compared to either chemical alone. Tannic acid with chlorantraniliprole also decreased the insect's carbohydrate, lipid and protein contents significantly. The results showed that the interaction between tannic acid and chlorantraniliprole on the growth inhibition of larvae was additive and tannic acid increased the toxicity of chlorantraniliprole to insects. The results of this study provide information useful in integrated pest management programs for S. exigua and show that tannic acid combined with chlorantraniliprole may be a route to reducing the use of synthetic pesticides.


Assuntos
Inseticidas/farmacologia , Spodoptera/efeitos dos fármacos , Taninos/farmacologia , ortoaminobenzoatos/farmacologia , Animais , Larva/efeitos dos fármacos , Reprodução/efeitos dos fármacos
6.
Int J Mol Sci ; 20(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067723

RESUMO

Plants employ an intricate and dynamic defense system that includes physiological, biochemical, and molecular mechanisms to counteract the effects of herbivorous attacks. In addition to their tolerance to phytotoxins, beet armyworm has quickly developed resistance to deltamethrin; a widely used pyrethroid insecticide in cotton fields. The lethal concentration (LC50) required to kill 50% of the population of deltamethrin to gossypol-fed Spodoptera exigua larvae was 2.34-fold higher than the control group, suggesting a reduced sensitivity as a consequence of the gossypol diet. Piperonyl butoxide (PBO) treatment was found to synergize with deltamethrin in gossypol-fed S. exigua larvae. To counteract these defensive plant secondary metabolites, beet armyworm elevates their production of detoxification enzymes, including cytochrome P450 monooxygenases (P450s). Gossypol-fed beet armyworm larvae showed higher 7-ethoxycoumarin-O-deethylase (ECOD) activities and exhibited enhanced tolerance to deltamethrin after 48 and 72 h when compared to the control. Moreover, gossypol pretreated S. exigua larvae showed faster weight gain than the control group after transferring to a deltamethrin-supplemented diet. Meanwhile, gossypol-induced P450s exhibited high divergence in the expression level of two P450 genes: CYP6AB14 and CYP9A98 in the midgut and fat bodies contributed to beet armyworm tolerance to deltamethrin. Knocking down of CYP6AB14 and CYP9A98, via double-stranded RNAs (dsRNA) in a controlled diet, rendered the larvae more sensitive to the insecticide. These data demonstrate that generalist insects can exploit secondary metabolites from host plants to enhance their defense systems against other toxic chemicals. Impairing this defense pathway by RNA interference (RNAi) holds a potential to eliminate the pest's tolerance to insecticides and, therefore, reduce the required dosages of agrochemicals in pest control.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Nitrilas/toxicidade , Piretrinas/toxicidade , Spodoptera/genética , Animais , Gossipol/farmacologia , Butóxido de Piperonila/farmacologia , Spodoptera/efeitos dos fármacos
7.
Sci Rep ; 14(1): 6029, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472262

RESUMO

Fall armyworm, Spodoptera frugiperda (FAW) is a cosmopolitan crop pest species that has recently become established in sub-Saharan Africa and Southeast Asia. Current FAW control is almost entirely dependent on synthetic pesticides. Biopesticides offer a more sustainable alternative but have limitations. For example, pyrethrum is an effective botanical insecticide with low mammalian toxicity but is highly UV labile, resulting in a rapid loss of efficacy in the field. Beauveria bassiana is an entomopathogenic fungus that is more persistent, but there is a time lag of several days before it causes insect mortality and leads to effective control. The combination of these biopesticides could mitigate their drawbacks for FAW control. Here we evaluated the efficacy of pyrethrum and B. bassiana as individual treatments and in combination against 3rd instar FAW. Four different combinations of these two biopesticides were tested, resulting in an antagonistic relationship at the lowest concentrations of B. bassiana and pyrethrum (1 × 104 conidia mL-1 with 25 ppm) and an additive effect for the other 3 combined treatments (1 × 104 conidia mL-1 with 100 ppm and 1 × 105 conidia mL-1 with 25 ppm and 100 ppm pyrethrum). Additionally, a delay in efficacy from B. bassiana was observed when combined with pyrethrum as well as a general inhibition of growth on agar plates. These results appear to show that this particular combination of biopesticides is not universally beneficial or detrimental to pest control strategies and is dependent on the doses of each biopesticide applied. However, the additive effect shown here at specific concentrations does indicate that combining biopesticides could help overcome the challenges of persistence seen in botanical pesticides and the slow establishment of EPF, with the potential to improve effectiveness of biopesticides for IPM.


Assuntos
Praguicidas , Piretrinas , Animais , Agentes de Controle Biológico , Larva , Controle de Pragas , Spodoptera/fisiologia
8.
Bull Entomol Res ; 103(4): 466-72, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23480367

RESUMO

The aphid sex pheromone component (4aS,7S,7aR)-nepetalactone is considered to be a potential tool for enhancing biological control of aphids. Studies have confirmed its potential to attract parasitoids, increase parasitism rates in the field and also alter the spatial distribution of parasitoids. An important aspect that has been overlooked is the impact that the introduction of nepetalactone may have on aphid populations already present in field or glasshouse environments. The most prevalent pest aphid populations in glasshouse and field environments are the asexual morphs, which are capable of exponential growth if populations are not controlled. The short-term implications of the sex pheromone on asexual aphids were observed through their behavioural response. Using Y-tube olfactometry, it is shown that virginoparae of the peach-potato aphid, Myzus persicae, are repelled by high concentrations of nepetalactone. Long-term effects of the pheromone which may span the aphid's life, or even generations, were assessed via mean relative growth rate (MRGR) and the intrinsic rate of natural increase (rm). Electroantennography also demonstrated that asexual female aphids are able to detect aphid sex pheromone components. To our knowledge, this is the first time it has been reported that M. persicae virginoparae are able to detect aphid sex pheromone components or that their behavioural response and/or performance has been studied. The implications of these results and their significance in understanding semiochemical communication are discussed.


Assuntos
Afídeos/efeitos dos fármacos , Afídeos/fisiologia , Quimiotaxia/efeitos dos fármacos , Ciclopentanos/farmacologia , Controle Biológico de Vetores/métodos , Pironas/farmacologia , Atrativos Sexuais/farmacologia , Análise de Variância , Animais , Antenas de Artrópodes/efeitos dos fármacos , Quimiotaxia/fisiologia , Monoterpenos Ciclopentânicos , Feminino , Olfatometria , Dinâmica Populacional , Reprodução Assexuada/fisiologia
9.
J Fungi (Basel) ; 9(11)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37998887

RESUMO

The insect pathogenic fungus, Ascosphaera apis, is the causative agent of honeybee chalk brood disease. Amylases are secreted by many plant pathogenic fungi to access host nutrients through the metabolism of starch, and the identification of new amylases can have important biotechnological applications. Production of amylase by A. apis in submerged culture was optimized using the response surface method (RSM). Media composition was modeled using Box-Behnken design (BBD) at three levels of three variables, and the model was experimentally validated to predict amylase activity (R2 = 0.9528). Amylase activity was highest (45.28 ± 1.16 U/mL, mean ± SE) in media composed of 46 g/L maltose and1.51 g/L CaCl2 at a pH of 6.6, where total activity was ~11-fold greater as compared to standard basal media. The enzyme was purified to homogeneity with a 2.5% yield and 14-fold purification. The purified enzyme had a molecular weight of 75 kDa and was thermostable and active in a broad pH range (> 80% activity at a pH range of 7-10), with optimal activity at 55 °C and pH = 7.5. Kinetic analyses revealed a Km of 6.22 mmol/L and a Vmax of 4.21 µmol/mL·min using soluble starch as the substrate. Activity was significantly stimulated by Fe2+ and completely inhibited by Cu2+, Mn2+, and Ba2+ (10 mM). Ethanol and chloroform (10% v/v) also caused significant levels of inhibition. The purified amylase essentially exhibited activity only on hydrolyzed soluble starch, producing mainly glucose and maltose, indicating that it is an endo-amylase (α-amylase). Amylase activity peaked at 99.38 U/mL fermented in a 3.7 L-bioreactor (2.15-fold greater than what was observed in flask cultures). These data provide a strategy for optimizing the production of enzymes from fungi and provide insight into the α-amylase of A. apis.

10.
J Fungi (Basel) ; 9(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132776

RESUMO

Little is known concerning terpenoids produced by members of the fungal order Ophiostomales, with the member Harringtonia lauricola having the unique lifestyle of being a beetle symbiont but potentially devastating tree pathogen. Nine known terpenoids, including six labdane diterpenoids (1-6) and three hopane triterpenes (7-9), were isolated from H. lauricola ethyl acetate (EtOAc) extracts for the first time. All compounds were tested for various in vitro bioactivities. Six compounds, 2, 4, 5, 6, 7, and 9, are described functionally. Compounds 2, 4, 5, and 9 expressed potent antiproliferative activity against the MCF-7, HepG2 and A549 cancer cell lines, with half-maximal inhibitory concentrations (IC50s) ~12.54-26.06 µM. Antimicrobial activity bioassays revealed that compounds 4, 5, and 9 exhibited substantial effects against Gram-negative bacteria (Escherichia coli and Ralstonia solanacearum) with minimum inhibitory concentration (MIC) values between 3.13 and 12.50 µg/mL. Little activity was seen towards Gram-positive bacteria for any of the compounds, whereas compounds 2, 4, 7, and 9 expressed antifungal activities (Fusarium oxysporum) with MIC values ranging from 6.25 to 25.00 µg/mL. Compounds 4, 5, and 9 also displayed free radical scavenging abilities towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide (O2-), with IC50 values of compounds 2, 4, and 6 ~3.45-14.04 µg/mL and 22.87-53.31 µg/mL towards DPPH and O2-, respectively. These data provide an insight into the biopharmaceutical potential of terpenoids from this group of fungal insect symbionts and plant pathogens.

11.
Integr Zool ; 17(6): 1028-1040, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34496452

RESUMO

The multimammate mouse, Mastomys natalensis, is the most common rodent pest species in sub-Saharan Africa. Currently, rodenticides are the preferred method used to reduce the population of rodent pests, but this method poses direct and indirect risks to humans and other non-target species. Fertility control is a promising alternative that has been argued to be a more sustainable and humane method for controlling rodent pests. In this study, we compared the effectiveness of fertility control bait EP-1 (quinestrol (E) and levonorgestrel (P), 10 ppm) and an anticoagulant rodenticide bait (bromadiolone, 50 ppm) on the population dynamics of M. natalensis in maize fields in Zambia during 2 cropping seasons. M. natalensis was the most abundant species in maize fields (77% of total captures). Fertility control reduced the number of juveniles and suppressed population growth of M. natalensis at the end of the 2019-2020 cropping season. The population density initially decreased after rodenticide treatment, but the population rapidly recovered through immigration. None of the treatments influenced maize damage by rodents at germination (F2,67 = 1.626, P = 0.204). Applying the treatments during the maize seeding time was effective at suppressing population growth at the end of the cropping season than application the month before maize seeding. This research indicates that a single-dose delivery of EP-1 and rodenticide have comparable effects on the population dynamics of M. natalensis. These findings are important in developing fertility control protocols for rodent pest populations to reduce maize crop damage and improve yields.


Assuntos
Rodenticidas , Zea mays , Humanos , Camundongos , Animais , Rodenticidas/farmacologia , Murinae , Fertilidade , Dinâmica Populacional
12.
Front Physiol ; 13: 884447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615670

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is a pest of many important crops globally. Effective control is challenging, with the pest exhibiting resistance to different synthetic pesticides across various groups. However, the mechanisms employed by resistant insects for overexpression of relevant detoxification genes remain unclear. The activity of detoxification enzymes was investigated in this study. Additionally, using RNA interference (RNAi), a functional analysis was completed of two P450s genes in an indoxacarb resistant population of fall armyworms. Elevated resistance levels (resistance ratio = 31.37-fold) in indoxacarb-selected populations of FAW were observed after 14 generations. The qRT-PCR showed higher expression of two cytochrome P450 genes, CYP321A7 and CYP6AE43, in this selected population compared to the control population. RNAi was applied to knock down the P450 dsCYP321A7 and dsCYP6AE43 genes in the FAW larvae. Droplet feeding of the dsRNAs (CYP321A7 and CYP6AE43) via an artificial diet significantly increased mortality rates in the indoxacarb treated population. A shorter larval developmental time of FAW was detected in all dsRNAs-fed larvae. Correspondingly, larval mass was reduced by dsRNAs in indoxacarb resistant populations of fall armyworm. Larval feeding assays demonstrate that dsRNAs targeting, specifically of CYP321A7 and CYP6AE43 enzymes, could be a beneficial technique in the management of indoxacarb resistant populations. Further study on the potential use of dsRNA and its application should be conducted in efforts to counter the development of resistance in FAW against various insecticides in the field.

13.
Sci Rep ; 12(1): 4843, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318374

RESUMO

Aphids are major pests affecting cereals, vegetables, fruit, forestry and horticultural produce. A multimodal approach may be an effective route to controlling this prolific pest. We assessed the individual and combined effect of eight insecticides and the entomopathogenic fungi, Metarhizium anisopliae (Metschin.) against the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), under laboratory conditions. Six of the insecticides tested were found to be highly compatible (flonicamid, imidacloprid, nitenpyram, dinotefuran, pyriproxyfen and spirotetramat), showing positive integration with the fungus and were selected for bioassays. The combination mixtures (1:1 ratio of M. anisopliae: insecticide) were significantly more toxic to A. gossypii than individual treatments. Maximum mortality (91.68%) of A. gossypii was recorded with combination of flonicamid and M. anisopliae (2.4 × 106 cfu/ml) 72 h after application. While minimum mortality (17.08%) was observed with the individual treatment of M. anisopliae (2.4 × 106 cfu/ml). The insecticides revealed toxicity consistent with their compatibility with M. anisopliae, ranking for efficacy exactly as they did for compatibility. In addition, the synergy factor (SF) and co-toxicity coefficient (CTC) values indicated synergistic interactions at different time intervals. The synergistic efficacy revealed the potential of fungus-insecticide integration against sucking insect pests.


Assuntos
Afídeos , Inseticidas , Metarhizium , Animais , Resistência a Inseticidas , Inseticidas/farmacologia
14.
Environ Sci Pollut Res Int ; 29(2): 1746-1762, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34709552

RESUMO

The beet army worm, Spodoptera exigua, is a widely distributed polyphagous pest of economically important crops worldwide. The management of this pest insect continues to face many challenges. Despite synthetic chemicals posing a serious threat to the environment, these remain the conventional approach for controlling S. exigua in the field. An over-reliance on chemical control has not only led to selection for resistance to insecticides and to a reduction of natural enemies, but has also polluted various components of ecosystem. Given these increasing pressures on the ecosystem, there is a need to implement integrated pest management (IPM) approaches exploiting a wider range of tools (biotechnological approaches, microbial control, biological control, cultural control, and use of host plant resistance) for an alternative to chemical control. The IPM approach can not only reduce the hazard of chemical residues in the environment and associated health problems, but may also provide best strategies to control insect pests. This review synthesizes published information on insecticide resistance of S. exigua and explores alternative IPM approaches to control S. exigua.


Assuntos
Beta vulgaris , Inseticidas , Animais , Ecossistema , Resistência a Inseticidas , Inseticidas/farmacologia , Larva , Spodoptera
15.
PeerJ ; 9: e11818, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34327062

RESUMO

BACKGROUND: Oviposition site selection is an important factor in determining the success of insect populations. Orius spp. are widely used in the biological control of a wide range of soft-bodied insect pests such as thrips, aphids, and mites. Orius strigicollis (Heteroptera: Anthocoridae) is the dominant Orius species in southern China; however, what factor drives its selection of an oviposition site after mating currently remains unknown. METHODS: Here, kidney bean pods (KBPs) were chosen as the oviposition substrate, and choice and nonchoice experiments were conducted to determine the preferences concerning oviposition sites on the KBPs of O. strigicollis. The mechanism of oviposition behavior was revealed through observation and measurement of oviposition action, the egg hatching rate, and the oviposition time. RESULTS: We found that O. strigicollis preferred the seams of the pods for oviposition, especially the seams at the tips of the KBPs. Choice and nonchoice experiments showed that females did not lay eggs when the KBP tail parts were unavailable. The rates of egg hatching on different KBP parts were not significantly different, but the time required for females to lay eggs on the tip seam was significantly lower. Decreased oviposition time is achieved on the tip seam because the insect can exploit support points found there and gain leverage for insertion of the ovipositor. DISCUSSION: The preferences for oviposition sites of O. strigicollis are significantly influenced by the topography of the KBP surface. Revealing such behavior and mechanisms will provide an important scientific basis for the mass rearing of predatory bugs.

16.
Insect Sci ; 28(3): 611-626, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33629522

RESUMO

The evolutionary success of phytophagous insects depends on their ability to efficiently exploit plants as a source of energy for survival. Herbivorous insects largely depend on the efficiency, flexibility, and diversity of their digestive physiology and sophistication of their detoxification system to use chemically diverse host plants as food sources. The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a polyphagous pest of many commercially important crops. To elucidate the ability of this insect pest to adapt to host plant mechanisms, we evaluated the impact of primary (corn) and alternate (rice) host plants after 11 generations on gut digestive enzymatic activity and expression profiles of related genes. Results indicated that the total protease and class-specific trypsin- and chymotrypsin-like protease activity of S. frugiperda significantly differed among host plant treatments. The class-specific protease profiles greatly differed in S. frugiperda midguts upon larval exposure to different treatments with inhibitors compared with treatments without inhibitors. Similarly, the single and cumulative effects of the enzyme-specific inhibitors TLCK, TPCK, and E-64 significantly increased larval mortality and reduced larval growth/mass across different plant treatments. Furthermore, the quantitative reverse transcription polymerase chain reaction results revealed increased transcription of two trypsin (SfTry-3, SfTry-7) and one chymotrypsin gene (Sfchym-9), which indicated that they have roles in host plant adaptation. Knockdown of these genes resulted in significantly reduced mRNA expression levels of the trypsin genes. This was related to the increased mortality observed in treatments compared with the dsRED control. This result indicates possible roles of S. frugiperda gut digestive enzymes and related genes in host plant adaptation.


Assuntos
Adaptação Fisiológica/genética , Sistema Digestório/metabolismo , Endopeptidases , Herbivoria , Spodoptera , Animais , Quimotripsina/genética , Produtos Agrícolas , Digestão/efeitos dos fármacos , Sistema Digestório/efeitos dos fármacos , Endopeptidases/efeitos dos fármacos , Endopeptidases/genética , Endopeptidases/metabolismo , Genes de Insetos , Herbivoria/efeitos dos fármacos , Herbivoria/genética , Herbivoria/fisiologia , Larva/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Oryza , Controle de Pragas , Inibidores de Proteases/farmacologia , Interferência de RNA , Spodoptera/efeitos dos fármacos , Spodoptera/genética , Spodoptera/metabolismo , Transcriptoma , Tripsina/genética , Zea mays
17.
Insects ; 12(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467491

RESUMO

Intercropping of aromatic plants provides an environmentally benign route to reducing pest damage in agroecosystems. However, the effect of intercropping on natural enemies, another element which may be vital to the success of an integrated pest management approach, varies in different intercropping systems. Rosemary, Rosmarinus officinalis L. (Lamiaceae), has been reported to be repellent to many insect species. In this study, the impact of sweet pepper/rosemary intercropping on pest population suppression was evaluated under greenhouse conditions and the effect of rosemary intercropping on natural enemy population dynamics was investigated. The results showed that intercropping rosemary with sweet pepper significantly reduced the population densities of three major pest species on sweet pepper, Frankliniella intonsa, Myzus persicae, and Bemisia tabaci, but did not affect the population densities of their natural enemies, the predatory bug, Orius sauteri, or parasitoid, Encarsia formosa. Significant pest population suppression with no adverse effect on released natural enemy populations in the sweet pepper/rosemary intercropping system suggests this could be an approach for integrated pest management of greenhouse-cultivated sweet pepper. Our results highlight the potential of the integration of alternative pest control strategies to optimize sustainable pest control.

18.
Insects ; 12(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546242

RESUMO

The fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is a polyphagous, invasive insect pest which causes significant losses in important crops wherever it has spread. The use of pesticides in agriculture is a key tool in the management of many important crop pests, including S. frugiperda, but continued use of insecticides has selected for various types of resistance, including enzyme systems that provide enhanced mechanisms of detoxification. In the present study, we analyzed the de novo transcriptome of S. frugiperda larvae exposed to Noposion Yihaogong® 5% emulsifiable concentrate (EC) insecticide focusing on detoxification genes and related pathways. Results showed that a total of 1819 differentially expressed genes (DEGs) were identified in larvae after being treated with Noposion Yihaogong® 5% EC insecticide, of which 863 were up- and 956 down-regulated. Majority of these differentially expressed genes were identified in numerous Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including metabolism of xenobiotics and drug metabolism. Furthermore, many of S. frugiperda genes involved in detoxification pathways influenced by lambda-cyhalothrin stress support their predicted role by further co-expression network analysis. Our RT-qPCR results were consistent with the DEG's data of transcriptome analysis. The comprehensive transcriptome sequence resource attained through this study enriches the genomic platform of S. frugiperda, and the identified DEGs may enable greater molecular underpinnings behind the insecticide-resistance mechanism caused by lambda-cyhalothrin.

19.
Plants (Basel) ; 9(2)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024119

RESUMO

Sustainable agricultural intensification employs alternatives to synthetic insecticides for pest management, but these are not always a direct replacement. Botanical insecticides, for example, have rapid knockdown but are highly labile and while biological pesticides are more persistent, they are slow acting. To mitigate these shortcomings, we combined the entomopathogenic fungus (EPF) Metarhizium anisopliae with pyrethrum and evaluated their efficacy against the bean aphid, Aphis fabae. To ascertain higher trophic effects, we presented these treatments to the parasitoid, Aphidius colemani, on an aphid infested plant in a Y-tube olfactometer and measured their preferences. Aphid mortality was significantly higher than controls when exposed to EPF or pyrethrum but was greater still when exposed to a combination of both treatments, indicating an additive effect. This highlights the potential for applications of pyrethrum at lower doses, or the use of less refined products with lower production costs to achieve control. While parasitoids were deterred by aphid infested plants treated with EPF, no preference was observed with the combination pesticide, which provides insight into the importance that both application technique and timing may play in the success of this new technology. These results indicate the potential for biorational pesticides that combine botanicals with EPF.

20.
Pest Manag Sci ; 75(3): 683-693, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30094908

RESUMO

BACKGROUND: In plant-insect interactions, phytotoxins such as gossypol, exert a defensive role on behalf of the plant by interfering with the essential metabolic, biochemical and physiological pathways of herbivorous insects. The beet armyworm, Spodoptera exigua (Hübner), is a key pest for many important crops including a range of vegetables, ornamentals, and cotton. In this study, we investigated how resistance to deltamethrin relates to enzyme activity in gossypol-pretreated larvae of S. exigua. RESULTS: Following selection with deltamethrin insecticides on gossypol-pretreated larvae for 10 generations, the Gos-SEL population developed a 113.29-fold resistance. Under the same conditions, the Delta-SEL selected population showed a 69.76-fold increase in resistance along with corresponding levels of xenobiotic defense enzyme activity. Similarly, the fecundity of the Delta-SEL population together with male and female longevity were found to be significantly lower when compared with the Gos-SEL population and the laboratory susceptible-strain group (SS-Strain). In addition, the activities of cytochrome P450s in S. exigua were significantly enhanced when the insects were fed on a deltamethrin and gossypol-pretreated diet compared with being fed on deltamethrin alone. CONCLUSION: The reproductive capacity of S. exigua is significantly reduced in Delta-SEL and Gos-SEL populations compared with the control group (SS-Strain). Elevation of the major detoxification enzyme cytochrome P450 monooxygenase and esterase might have an important role in inducing tolerance to deltamethrin in gossypol-fed S. exigua populations. This study enhances our understanding of detoxification enzyme pathways for S. exigua gene expression and their role in responses to insecticides and plant secondary metabolites. © 2018 Society of Chemical Industry.


Assuntos
Gossipol/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Spodoptera/efeitos dos fármacos , Animais , Sistema Enzimático do Citocromo P-450 , Inativação Metabólica/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/genética , Spodoptera/genética , Spodoptera/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA