Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Bone Miner Metab ; 41(4): 431-442, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37036531

RESUMO

INTRODUCTION: Tetracyclines (TCs) embrace a class of broad-spectrum antibiotics with unrelated effects at sub-antimicrobial levels, including an effective anti-inflammatory activity and stimulation of osteogenesis, allowing their repurposing for different clinical applications. Recently, sarecycline (SA)-a new-generation molecule with a narrower antimicrobial spectrum-was clinically approved due to its anti-inflammatory profile and reduced adverse effects verified with prolonged use. Notwithstanding, little is known about its osteogenic potential, previously verified for early generation TCs. MATERIALS AND METHODS: Accordingly, the present study is focused on the assessment of the response of human bone marrow-derived mesenchymal stromal cells (hBMSCs) to a concentration range of SA, addressing the metabolic activity, morphology and osteoblastic differentiation capability, further detailing the modulation of Wnt, Hedgehog, and Notch signaling pathways. In addition, an ex vivo organotypic bone development system was established in the presence of SA and characterized by microtomographic and histochemical analysis. RESULTS: hBMSCs cultured with SA presented a significantly increased metabolic activity compared to control, with an indistinguishable cell morphology. Moreover, RUNX2 expression was upregulated 2.5-fold, and ALP expression was increased around sevenfold in the presence of SA. Further, GLI2 expression was significantly upregulated, while HEY1 and HNF1A were downregulated, substantiating Hedgehog and Notch signaling pathways' modulation. The ex vivo model developed in the presence of SA presented a significantly enhanced collagen deposition, extended migration areas of osteogenesis, and an increased bone mineral content, substantiating an increased osteogenic development. CONCLUSION: Summarizing, SA is a promising candidate for drug repurposing within therapies envisaging the enhancement of bone healing/regeneration.


Assuntos
Reposicionamento de Medicamentos , Ouriços , Humanos , Animais , Osteogênese , Diferenciação Celular , Tetraciclinas/farmacologia , Células Cultivadas , Células da Medula Óssea
2.
J Prosthet Dent ; 130(1): 87-95, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34711406

RESUMO

STATEMENT OF PROBLEM: Microgap and bacterial microleakage at the implant-prosthetic abutment interface are recognized concerns for implant-supported restorations, leading to inflammation of the peri-implant tissues, with deleterious consequences for crestal bone levels. However, little is known regarding the interface established between the implant and the healing abutment or cover screw placed for the osseointegration phase. PURPOSE: The purpose of this in vitro study was to characterize the implant-cover screw and implant-healing abutment interfaces of a platform-switched implant system to determine the microgap and bacterial microleakage of the system and evaluate the biological response and functionality of an interface sealing agent. MATERIAL AND METHODS: The interfacial microgaps of the implant-healing abutment and implant-cover screw interfaces were characterized by scanning electron microscopy (n=10), and bacterial microleakage was evaluated after colonization with Enterococcus faecalis in a 30-day follow-up (n=10). The sealing efficacy and irritation potential of a silicone-based sealer were determined by using the hen's egg test on chorioallantoic membrane assay. The 2-sample t test was performed to compare means between groups, and data presented with the Kaplan-Meier method were compared statistically by using the log-rank test (α=.05). RESULTS: The interfacial microgap was less than 2.5 µm for both systems. Bacterial microleakage was noted in approximately 50% of the specimens, particularly at early time points, at both the healing abutment and cover screw interfaces. The silicone-based sealer prevented bacterial leakage in the experimental setting. CONCLUSIONS: The implant-healing abutment and implant-cover screw interfaces of the tested system, despite the low microgap, allowed for bacterial microleakage after internal colonization. The use of a nonirritating silicone-based sealing agent effectively sealed the system.


Assuntos
Implantes Dentários , Osseointegração , Animais , Feminino , Galinhas , Dente Suporte , Implantes Dentários/microbiologia , Bactérias , Projeto do Implante Dentário-Pivô
3.
J Cell Physiol ; 233(2): 1029-1040, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28407244

RESUMO

Cigarette smoke is associated to pathological weakening of bone tissue, being considered an important playmaker in conditions such as osteoporosis and periodontal bone loss. In addition, it is also associated with an increased risk of failure in bone regeneration strategies. The present work aimed to characterize the effects of nicotine on human osteoclastogenesis over a hydroxyapatite substrate. Osteoclast precursors were maintained in the absence or presence of the osteoclastogenesis enhancers M-CSF and RANKL, and were further treated with nicotine levels representative of the concentrations observed in the plasma and saliva of smokers. It was observed that nicotine at low concentrations elicit an increase in osteoclast differentiation, but only in the presence of M-CSF and RANKL it was also able to significantly increase the resorbing ability of osteoclasts. A slight downregulation of NFkB pathway and an increase in the production of TNF-α and, particularly PGE2, were involved in the observed effects of nicotine. At high concentrations, nicotine revealed cytotoxic effects, causing a decrease in cell density. In conclusion, nicotine at levels found in the plasma of the smokers, has the ability to act directly on osteoclast precursors, inducing its osteoclastogenic differentiation. The stimulatory behavior appears to be dependent on the stage of osteoclastic differentiation of the precursor cells, which means, in the absence of M-CSF and RANKL, it only favors the initial stages of osteoclast differentiation, while in the presence of the growth factors, a significant increase in their resorbing ability is also achieved.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Durapatita/farmacologia , Nicotina/farmacologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Actinas/metabolismo , Adulto , Cálcio/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Humanos , Fator Estimulador de Colônias de Macrófagos/farmacologia , NF-kappa B/metabolismo , Nicotina/toxicidade , Osteoclastos/metabolismo , Osteogênese/genética , Ligante RANK/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
4.
Nanomedicine ; 13(1): 231-239, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27591960

RESUMO

The rapid emergence of antibiotic resistance is becoming an imminent problem in bone tissue engineering, and therefore biomaterials must be modified to promote the tissue integration before bacterial adhesion. In this work, silk fibroin/nanohydroxyapatite hydrogel was modified with in situ synthesized silver and gold nanoparticles (AgNPs and AuNPs), taking advantage of the tyrosine amino acid. The presence of AgNPs and AuNPs in the hydrogels was characterized by UV spectrophotometer, transmission electron microscopy and thermogravimetric analysis. In vitro antimicrobial studies revealed that hydrogels with AgNPs and AuNPs exhibited significant inhibition ability against both gram-positive and gram-negative bacteria. Cytocompatibility studies carried out using osteoblastic cells revealed that up to 0.5 wt% of AgNPs, and for all concentrations of AuNPs, the hydrogels can be effectively used as antimicrobial materials, without compromising cell behavior. On the basis of the aforementioned observations, these hydrogels are very attractive for bone tissue engineering.


Assuntos
Antibacterianos/farmacologia , Regeneração Óssea , Durapatita/química , Fibroínas/química , Hidrogéis/química , Nanopartículas Metálicas/química , Linhagem Celular , Ouro , Humanos , Testes de Sensibilidade Microbiana , Osteoblastos/efeitos dos fármacos , Prata , Engenharia Tecidual
5.
Langmuir ; 32(4): 1091-100, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26771563

RESUMO

A primary goal in bone tissue engineering is the design of implants that induce controlled, guided, and rapid healing. The events that normally lead to the integration of an implant into bone and determine the performance of the device occur mainly at the tissue-implant interface. Topographical surface modification of a biomaterial might be an efficient tool for inducing stem cell osteogenic differentiation and replace the use of biochemical stimuli. The main goal of this work was to develop micropatterned bioactive silica thin films to induce the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) only through topographical stimuli. Line and pillar micropatterns were developed by a combination of sol-gel/soft lithography and characterized by scanning electron microscopy, atomic force microscopy, and contact angle measurements. hMSCs were cultured onto the microfabricated thin films and flat control for up to 21 days under basal conditions. The micropatterned groups induced levels of osteogenic differentiation and expression of osteoblast-associated markers higher than those of the flat controls. Via comparison of the micropatterns, the pillars caused a stronger response of the osteogenic differentiation of hMSCs with a higher level of expression of osteoblast-associated markers, ALP activity, and extracellular matrix mineralization after the cells had been cultured for 21 days. These findings suggest that specific microtopographic cues can direct hMSCs toward osteogenic differentiation.


Assuntos
Células-Tronco Mesenquimais/citologia , Osteoclastos/citologia , Dióxido de Silício/química , Diferenciação Celular , Células Cultivadas , Humanos , Microtecnologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Engenharia Tecidual
6.
Inorg Chem ; 54(20): 9929-35, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26407209

RESUMO

Two new examples of uncommon three-dimensional Ca-bearing metal organic frameworks, [Ca(H2O)3(HPXBP)] (CaP1) and [Ca2(H2O)2(HPXBP)1.5] (CaP2) (PXBP: p-xylylenebisphosphonate), were prepared and their structures characterized by single crystal X-ray diffraction. CaP1 crystallizes in the monoclinic C2/c space group, with three water molecules occupying a half coordination sphere on one side of the Ca atom, while CaP2 crystallizes in the triclinic P1̅ space group, with two crystallographic unique Ca atoms, each coordinated by a single water molecule. In contrast with CaP2, which exhibits very low bioactivity, CaP1 readily precipitates bone-precursor phases (octacalcium phosphate, OCP, and hydroxyapatite) in SBF solutions. Moreover, studies with MG63 osteoblast-like cells indicate that CaP1 is not toxic and stimulates bone mineralization and, thus, holds considerable potential for treating bone diseases, such as osteoporosis.


Assuntos
Doenças Ósseas/tratamento farmacológico , Fosfatos de Cálcio/uso terapêutico , Fosfatos de Cálcio/síntese química , Fosfatos de Cálcio/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Relação Estrutura-Atividade
7.
Clin Oral Investig ; 18(2): 479-88, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23604699

RESUMO

OBJECTIVES: Bone tissue is constantly being moulded and shaped by the coordinated action of bone-resorbing osteoclasts and bone-synthesizing osteoblasts. This study addresses the long-term effects of endodontic sealers' extracts (AH Plus™, GuttaFlow™, Tubliseal™, Sealapex™ and RealSeal™) on co-cultures of human osteoclastic and osteoblastic cells. METHODS: The sealers were mixed according to the manufacturer's instructions, freshly extracted with culture medium (1.3 cm(2)/ml; 24 h; 37 °C, 5% CO2/air) and diluted (1:20-1:2,500). Co-cultures of osteoclastic and osteoblastic cells, established from precursors present in human peripheral blood mononuclear cells and bone marrow cells, respectively, were exposed to the extracts for 21 days. Co-cultures were characterized for the osteoclastic and osteoblastic response. RESULTS: The sealers caused a dose-dependent decrease on TRAP and ALP activities, respectively, an osteoclastic and an osteoblastic marker. The resorbing ability of the osteoclastic cells and the expression of osteoclastic and osteoblastic genes were also decreased; in addition, the extracts affected several intracellular signalling pathways. Inhibition was higher during the two first weeks, followed by adaptive cell responses. Osteoblastic response was more sensitive to the extracts' toxicity and showed lower adaptive ability. SIGNIFICANCE: A correlation to the clinical situation cannot be predicted; however, the results suggest that the sealers' eluents might disrupt the highly regulated interaction between osteoblastic and osteoclastic cells, compromising the local bone metabolism. Also, the higher susceptibility of the osteoblastic response might be particularly relevant in the initial stages of the healing of periapical lesions, due to the significant role of the bone formation events.


Assuntos
Endodontia , Osteoblastos/citologia , Osteoclastos/citologia , Selantes de Fossas e Fissuras , Adulto , Técnicas de Cocultura , Humanos , Masculino
8.
Hum Mol Genet ; 20(6): 1173-81, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21224257

RESUMO

Using segregation analyses, control of malaria parasites has previously been linked to a major gene within the chromosomal region 5q31-33, but also to complex genetic factors in which effects are under substantial age-dependent influence. However, the responsible gene variants have not yet been identified for this chromosomal region. In order to perform association analyses of 5q31-33 locus candidate single nucleotide polymorphisms (SNPs), 1015 children were recruited at the age of 3 months and followed monthly until the age of 2 years in an area holoendemic for Plasmodium falciparum malaria in Ghana. Quantitative (incidence rates of malaria episodes) and qualitative phenotypes (i.e. 'more than one malaria episode' or 'not more than one malaria episode') were used in population- and family-based analyses. The strongest signal was observed for the interleukin 3 gene (IL3) SNP rs40401 (P = 3.4 × 10(-7), P(c)= 1.4 × 10(-4)). The IL3 genotypes rs40401(CT) and rs40401(TT) were found to exert a protective effect of 25% [incidence rate ratio (IRR) 0.75, P = 4.1 × 10(-5)] and 33% (IRR 0.67, P = 3.2 × 10(-8)), respectively, against malaria attacks. The association was confirmed in transmission disequilibrium tests (TDT, qTDT). The results could argue for a role of IL3 in the pathophysiology of falciparum malaria.


Assuntos
Cromossomos Humanos Par 5/genética , Variação Genética , Interleucina-3/genética , Malária Falciparum/genética , Pré-Escolar , Feminino , Gana/epidemiologia , Humanos , Imunidade Inata , Lactente , Interleucina-3/imunologia , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Masculino , Plasmodium falciparum/fisiologia , Polimorfismo de Nucleotídeo Único , Recidiva
9.
Biomater Sci ; 11(7): 2427-2444, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36756939

RESUMO

Titanium (Ti) and its alloys are the most widely used metallic biomaterials in total joint replacement; however, increasing evidence supports the degradation of its surface due to corrosion and wear processes releasing debris (ions, and micro and nanoparticles) and contribute to particle-induced osteolysis and implant loosening. Cell-to-cell communication involving several cell types is one of the major biological processes occurring during bone healing and regeneration at the implant-bone interface. In addition to the internal response of cells to the uptake and intracellular localization of wear debris, a red flag is the ability of titanium dioxide nanoparticles (mimicking wear debris) to alter cellular communication with the tissue background, disturbing the balance between osseous tissue integrity and bone regenerative processes. This study aims to understand whether titanium dioxide nanoparticles (TiO2 NPs) alter osteoblast-derived exosome (Exo) biogenesis and whether exosomal protein cargos affect the communication of osteoblasts with human mesenchymal stem/stromal cells (HMSCs). Osteoblasts are derived from mesenchymal stem cells coexisting in the bone microenvironment during development and remodelling. We observed that TiO2 NPs stimulate immature osteoblast- and mature osteoblast-derived Exo secretion that present a distinct proteomic cargo. Functional tests confirmed that Exos derived from both osteoblasts decrease the osteogenic differentiation of HMSCs. These findings are clinically relevant since wear debris alter extracellular communication in the bone periprosthetic niche, contributing to particle-induced osteolysis and consequent prosthetic joint failure.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Nanopartículas , Osteólise , Humanos , Osteogênese , Titânio/efeitos adversos , Osteólise/induzido quimicamente , Exossomos/metabolismo , Proteômica , Osteoblastos , Diferenciação Celular , Fatores Imunológicos , Comunicação Celular
10.
Int J Pharm ; 632: 122541, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36566824

RESUMO

Development of multifunctional 3D patches with appropriate antibacterial and biocompatible properties is needed to deal with wound care regeneration. Combining gelatin-based hydrogel with a well-known natural antibacterial honey (Manuka honey, MH) in a 3D patch can provide improved printability and at the same time provide favourable biological effects that may be useful in regenerative wound treatment. In this study, an antibacterial Manuka-Gelatin 3D patches was developed by an extrusion-based printing process, with controlled porosity, high shape fidelity, and structural stability. It was demonstrated the antibacterial activity of Manuka-Gelatin 3D patches against both gram-positive bacteria (S. epidermidis and S. aureus) and gram-negative (E. coli), common in wound infection. The 3D Manuka-Gelatin base patches demonstrated antibacterial activity, and moreover enhanced the proliferation of human dermal fibroblasts and human epidermal keratinocytes, and promotion of angiogenesis. Moreover, the ease of printing achieved by the addition of honey, coupled with the interesting biological response obtained, makes this 3D patch a good candidate for wound healing applications.


Assuntos
Mel , Staphylococcus aureus , Humanos , Gelatina , Testes de Sensibilidade Microbiana , Escherichia coli , Cicatrização , Mel/análise , Antibacterianos/química , Impressão Tridimensional , Hidrogéis
11.
J Cell Biochem ; 113(3): 1069-79, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22274920

RESUMO

Breast cancer frequently metastasizes to the bone, often leading to the formation of osteolytic lesions. This work compares the paracrine-induced osteoclastogenesis mediated by four human breast cancer cell lines, the estrogen-receptor positive T47D and MCF-7 and the estrogen-negative SK-BR-3 and Hs-578T cell lines. Human osteoclast precursor cells were cultured in the presence of conditioned media from the breast cancer cell lines (10% and 20%), collected at different culture periods (48 h, 7 days, and 14 days). Cultures performed in the absence or the presence of M-CSF and RANKL served as negative and positive control, respectively. Results showed that the cell lines differentially expressed several osteoclastogenic genes. All cell lines exhibited a significant osteoclastogenic potential, evidenced by a high TRAP activity and number of osteoclastic cells, expression of several osteoclast-related genes, and, particularly, a high calcium phosphate resorption activity. Differences among the osteoclastogenic potential of the cell lines were noted. T47D and MCF-7 cell lines displayed the highest and the lowest osteoclastogenic response, respectively. Despite the variability observed, MEK and NF-κB signaling pathways, and, at a lesser extent, PGE2 production, seemed to have a central role on the observed osteoclastogenic response. In conclusion, the tested breast cancer cell lines exhibited a high osteoclastogenic potential, although with some variability on the cell response profile, a factor to be considered in the development of new therapeutic approaches for breast cancer-induced bone metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Osteoclastos/metabolismo , Comunicação Parácrina , Fosfatase Ácida/análise , Actinas/análise , Reabsorção Óssea , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Isoenzimas/análise , Osteoclastos/química , Osteoclastos/fisiologia , Receptores da Calcitonina/análise , Transdução de Sinais , Células-Tronco/metabolismo , Fosfatase Ácida Resistente a Tartarato , Vitronectina/análise
12.
Colloids Surf B Biointerfaces ; 217: 112643, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35759895

RESUMO

The development of nanoparticles as antimicrobial agents against pathogenic bacteria has emerged as one of the leading global healthcare challenges. In this study, Mg(OH)2 NPs with controlled morphology and nanometric size, using two distinct counterions, chloride or nitrate, have been synthesized using Rosehip (RH) extract that has privileges beyond conventional chemical and physical methods. Various physicochemical techniques were used to characterize the RH-functionalized Mg-based NPs. They exhibited a spherical shape with a diameter of ~10 nm, low crystallinity compared to non-functionalized NPs, high polyphenol content, and negative zeta potential in three different media (H2O, TSB, and cell medium). The resulting RH-functionalized Mg-based NPs also exhibited an increased antibacterial activity against Gram-positive (S. Epidermis and S. aureus) and Gram-negative (E. Coli) bacteria compared to those prepared in pure water (0 % RH), an effect that was well evident with low NPs contents (250 µg/mL). A preliminary attempt to elucidate their mechanism of action revealed that RH-functionalized Mg-based NPs could disrupt cellular structures (bacterial cell wall and cytoplasmic membrane) and damage the bacterial cell, as confirmed by TEM imaging. Noteworthy is that Mg-based NPs exhibited higher toxicity to bacteria than to eukaryotic cells. More significantly, was their enhanced in vivo efficacy in a Galleria mellonella invertebrate animal model, when infected with S. aureus bacteria. Overall, our findings indicate that well-engineered Rosehip magnesium-based nanoparticles can be used as a green non-cytotoxic polyphenolic source in different antibacterial applications for the biomedical industry.


Assuntos
Nanopartículas Metálicas , Rosa , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Escherichia coli , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Staphylococcus aureus
13.
Biomater Adv ; 134: 112563, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35525746

RESUMO

Controlling bacterial biofilm formation on silicone-based bloodstream catheters is of great concern to prevent related-infections. In this study, rhamnolipids (RLs), glycolipid biosurfactants, specifically a RLs mixture and the purified di-RL (RhaRhaC10:0C10:0) were covalently bonded to silicone with the intention of reaching long-lasting antibiofilm surfaces. RLs mixture and di-RL were identified by an UHPLC-MS method that also allowed the confirmation of compound isolation by automated flash chromatography. Silicone surfaces underwent air-plasma treatment, inducing reactive oxygen radicals able to promote the RLs grafting that was confirmed by contact angle, FTIR-ATR and AFM measurements. The antibiofilm activity towards different Gram positive strains was evaluated by colony forming units (CFU) count and confocal laser microscopy. In addition, protein adsorption and biocompatibility were also investigated. RLs were successfully grafted onto silicone and RLs mixture and RhaRhaC10C10:0 functionalized specimens reduced the biofilm formation over 2.3 log units against methicillin sensitive Staphylococcus aureus. Additionally, a decrease of 1 log unit was observed against methicillin resistant S. aureus and S. epidermidis. Functionalized samples showed cytocompatibility towards human dermal fibroblasts, hemocompatibility and no vascular irritation potential. The results mentioned above revealed a synergy between the antimicrobial and the anti-adhesive properties of RLs, making these compounds good candidates for the improvement of the medical devices antibiofilm properties.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Biofilmes , Catéteres/microbiologia , Dimetilpolisiloxanos , Glicolipídeos/farmacologia , Humanos , Staphylococcus epidermidis
14.
Colloids Surf B Biointerfaces ; 217: 112679, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35816884

RESUMO

In clinic there is a demand to solve the drawback of medical devices multispecies related infections. Consequently, different biomaterial surfaces, such as vascular catheters, urgently need improvement regarding their antifouling/antimicrobial properties. In this work, we covalently functionalized medical grade polydimethylsiloxane (PDMS) with antimicrobial rhamnolipids to investigate the biomaterial surface activity towards mono and dual species biofilms. Preparation of surfaces with "piranha" oxidation, followed by APTES bonding and carbodiimide reaction with rhamnolipids effectively bonded these compounds to PDMS surface as confirmed by FTIR-ATR and XPS analysis. Generated surfaces were active towards S. aureus biofilm formation showing a 4.2 log reduction while with S. epidermidis and C. albicans biofilms a reduction of 1.2 and 1.0 log reduction, respectively, was observed. Regarding dual-species testing the higher biofilm log reduction observed was 1.9. Additionally, biocompatibility was assessed by cytocompatibility towards human fibroblastic cells, low platelet activation and absence of vascular irritation. Our work not only sheds light on using covalently bonded rhamnolipids towards dual species biofilms but also highlights the biocompatibility of the obtained PDMS surfaces.


Assuntos
Anti-Infecciosos , Infecções Relacionadas a Cateter , Antibacterianos , Materiais Biocompatíveis/farmacologia , Biofilmes , Candida albicans , Infecções Relacionadas a Cateter/tratamento farmacológico , Infecções Relacionadas a Cateter/prevenção & controle , Dimetilpolisiloxanos/farmacologia , Glicolipídeos , Humanos , Staphylococcus aureus/fisiologia , Staphylococcus epidermidis
15.
Pharmaceutics ; 14(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36145584

RESUMO

Silicone-based medical devices composed of polydimethylsiloxane (PDMS) are widely used all over the human body (e.g., urinary stents and catheters, central venous catheters stents) with extreme clinical success. Nevertheless, their abiotic surfaces, being prone to microorganism colonization, are often involved in infection occurrence. Improving PDMS antimicrobial properties by surface functionalization with biosurfactants to prevent related infections has been the goal of different works, but studies that mimic the clinical use of these novel surfaces are missing. This work aims at the biofunctional assessment of PDMS functionalized with rhamnolipids (RLs), using translational tests that more closely mimic the clinical microenvironment. Rhamnolipids were covalently bonded to PDMS, and the obtained surfaces were characterized by contact angle modification assessment, ATR-FTIR analysis and atomic force microscopy imaging. Moreover, a parallel flow chamber was used to assess the Staphylococcus aureus antibiofilm activity of the obtained surfaces under dynamic conditions, and an in vitro characterization with human dermal fibroblast cells in both direct and indirect characterization assays, along with an in vivo subcutaneous implantation assay in the translational rabbit model, was performed. A 1.2 log reduction in S. aureus biofilm was observed after 24 h under flow dynamic conditions. Additionally, functionalized PDMS lessened cell adhesion upon direct contact, while supporting a cytocompatible profile, within an indirect assay. The adequacy of the biological response was further validated upon in vivo subcutaneous tissue implantation. An important step was taken towards biofunctional assessment of RLs-functionalized PDMS, reinforcing their suitability for medical device usage and infection prevention.

16.
J Cell Biochem ; 112(12): 3704-13, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21815187

RESUMO

Osteosarcoma is usually associated with a disturbed bone metabolism. The aim of this work was to characterize the reciprocal interactions between MG63 osteosarcoma cells and osteoclasts, in a co-culture system. Co-cultures were characterized throughout 21 days for the osteoclastogenic response and the expression of osteoblastic markers. Monocultures of MG63 cells and peripheral blood mononuclear cell (PBMC) and co-cultures of PBMC + human bone marrow cells (hBMC) were also performed. Compared to PBMC cultures, co-cultures yielded significantly increased gene expression of osteoclast-related markers, tartarate-acid resistant phosphatase (TRAP) activity, TRAP-positive multinucleated cells, cells with actin rings and vitronectin receptors (VNR) and calcitonin receptors (CTR) and calcium phosphate resorbing ability. Results showed that the development of functional osteoclasts required a very low number of MG63 cells, suggesting a high osteoclastogenic-triggering capacity of this cell line. Subjacent mechanisms involved the pathways MEK and NF-kB, although with a lower relevance than that observed on PBMC monocultures or co-cultures of hBMC + PBMC; PGE2 production also had a contribution. Compared to MG63 cell monocultures, the co-culture expressed lower levels of COL1 and ALP, and higher levels of BMP-2, suggesting that PBMC also modulated the osteoblastic behavior. While M-CSF appeared to be involved in the osteoclastogenic response on the MG63 + PBMC co-cultures, RANKL does not seem to be a key player in the process. On the other hand, sphingosine-1-phosphate production might contribute to the modulation of the osteoblastic behavior. Results suggest that the reciprocal modulation between osteosarcoma and osteoclastic cells might contribute to the disturbed bone metabolism associated with bone tumors.


Assuntos
Neoplasias Ósseas/patologia , Osteoblastos/citologia , Osteoclastos/citologia , Osteossarcoma/patologia , Sequência de Bases , Linhagem Celular Tumoral , Técnicas de Cocultura , Primers do DNA , Humanos , Reação em Cadeia da Polimerase
17.
J Endod ; 47(9): 1461-1466, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34126159

RESUMO

INTRODUCTION: Mineral trioxide aggregate (MTA)-based sealers are endodontic materials with widespread success in distinct clinical applications, potentially embracing direct contact with the bone tissue. Bone response to these materials has been traditionally addressed in vitro. Nonetheless, translational data are limited by the absence of native cell-to-cell and cell-to-matrix interactions that hinder the representativeness of the analysis. Ex vivo organotypic systems, relying on the culture of explanted biological tissues, preserve the cell/tissue composition, reproducing the spatial and organizational in situ complexity. This study was grounded on an innovative research approach, relying on the assessment of an ex vivo organotypic bone tissue culture system to address the osteogenic response to 3 distinct MTA-based sealers. METHODS: Embryonic chick femurs were isolated and grown ex vivo for 11 days in the presence of MTA Plus (Avalon Biomed Inc, Bradenton, FL), ProRoot MTA (Dentsply Tulsa Dental, Hohnson City, Germany), Biodentine (Septodont, Saint Maurdes Fosses, France), or AH Plus (Dentsply Sirona, Konstanz, Germany); the latter was used as a control material. Femurs were characterized by histologic, histochemical, and histomorphometric analysis. Gene expression assessment of relevant osteogenic markers was conducted by quantitative polymerase chain reaction. RESULTS: All MTA-based sealers presented an enhanced osteogenic performance compared with AH Plus. Histochemical and histomorphometric analyses support the increased activation of the osteogenic program by MTA-based sealers, with enhanced collagenous matrix deposition and tissue mineralization. Gene expression analysis supported the enhanced activation of the osteogenic program. Comparatively, ProRoot MTA induced the highest osteogenic functionality on the characterized femurs. CONCLUSIONS: MTA-based sealers enhanced the osteogenic activity within the assayed organotypic bone model, which was found to be a sensitive system for the assessment of osteogenic modulation mediated by endodontic sealers.


Assuntos
Materiais Restauradores do Canal Radicular , Compostos de Alumínio/farmacologia , Osso e Ossos , Compostos de Cálcio/farmacologia , Combinação de Medicamentos , Teste de Materiais , Osteogênese , Óxidos/farmacologia , Materiais Restauradores do Canal Radicular/farmacologia , Silicatos/farmacologia
18.
Mater Sci Eng C Mater Biol Appl ; 120: 111761, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545902

RESUMO

Implant surfaces with cytocompatible and antibacterial properties are extremely desirable for the prevention of implant's infection and the promotion of osseointegration. In this work, both micro-arc oxidation (MAO) and DC magnetron sputtering techniques were combined in order to endow tantalum-based surfaces with osteoblastic cytocompatibility and antibacterial activity. Porous Ta2O5 layers containing calcium (Ca) and phosphorous (P) were produced by MAO (TaCaP) to mimic the bone tissue morphology and chemical composition (Ca/P ratio close to 1.67). Furthermore, zinc (Zn) nanoparticles were deposited onto the previous surfaces by DC magnetron sputtering without or with an additional thin carbon layer deposited over the nanoparticles (respectively, TaCaP-Zn and TaCaP-ZnC) to control the Zn ions (Zn2+) release. Before osteoblastic cell seeding, the surfaces were leached for three time-points in PBS. All modified samples were cytocompatible. TaCaP-Zn slightly impaired cell adhesion but this was improved in the samples leached for longer immersion times. The initial cell adhesion was clearly improved by the deposition of the carbon layer on the Zn nanoparticles, which also translated to a higher proliferation rate. Both Zn-containing surfaces presented antibacterial activity against S. aureus. The two surfaces were active against planktonic bacteria, and TaCaP-Zn also inhibited sessile bacteria. Attributing to the excellent in vitro performance of the nanostructured Ta surface, with osteoconductive elements by MAO followed by antimicrobial nanoparticles incorporation by magnetron sputtering, this work is clearly a progress on the strategy to develop a new generation of dental implants.


Assuntos
Implantes Dentários , Nanopartículas , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Óxidos , Porosidade , Staphylococcus aureus , Propriedades de Superfície , Tantálio , Titânio
19.
Heliyon ; 7(3): e06513, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33817376

RESUMO

This cohort study aimed to characterize the oral microbiome of children with CLP, from two different age groups, and evaluate the effect of supervised or unsupervised toothbrushing on the microbiome of the cleft over time. Swab samples were collected from the cleft area at three different time points (A; no brushing, B; after 15 days and C; after 30 days) and were analyzed using next-generation sequencing to determine the microbial composition and diversity in these time points. Overall, brushing significantly decreased the abundance of the genera Alloprevotella and Leptotrichia in the two age groups examined, and for Alloprevotella this decrease was more evident for children (2-6 years old). In the preteen group (7-12 years old), a significant relative increase of the genus Rothia was observed after brushing. In this study, the systematic brushing over a period of thirty days also resulted in differences at the intra-individual bacterial richness.

20.
Int J Pharm ; 593: 120097, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33217547

RESUMO

Polymeric platforms obtained by three-dimensional (3D) printing are becoming increasingly important as multifunctional therapeutic systems for bone treatment applications. In particularly, researchers aim to control bacterial biofilm on these 3D-platforms and enhance re-growing bone tissue, at the same time. This study aimed to fabricate a 3D-printed polylactic acid platform loaded with hydroxyapatite (HA), iron oxide nanoparticles (IONPs) and an antibiotic (minocycline) with tuneable properties and multistimuli response. IONPs were produced by a facile chemical co-precipitation method showing an average diameter between 11 and 15 nm and a superparamagnetic behaviour which was preserved when loaded into the 3D-platforms. The presence of two types of nanoparticles (IONPs and HA) modify the nanomorphological/nanotopographical feature of the 3D-platforms justifying their adequate bioactivity profile and in vitro cellular effects on immortalized and primary osteoblasts, including cytocompatibility and increased osteogenesis-related gene expression (RUNX2, BGLAP and SPP1). Disk diffusion assays and SEM analysis confirmed the effect of the 3D-platforms loaded with minocycline against Staphylococcus aureus. Altogether results showed that fabricated 3D-platforms combined the exact therapeutic antibiofilm dose of the antibiotic against S. aureus, with the enhanced osteogenic stimulation of the HA and IONPs nanoparticles which is a disruptive approach for bone targeting applications.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Antibacterianos/farmacologia , Regeneração Óssea , Osso e Ossos , Osteogênese , Impressão Tridimensional , Staphylococcus aureus , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA