Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Org Biomol Chem ; 22(17): 3425-3438, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38590227

RESUMO

We have applied the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to prepare a library of ten coumarin-azasugar-benzyl conjugates and two phthalimide-azasugar-benzyl conjugates with potential anti-Alzheimer and anti-cancer properties. The compounds were evaluated as cholinesterase inhibitors, demonstrating a general preference, of up to 676-fold, for the inhibition of butyrylcholinesterase (BuChE) over acetylcholinesterase (AChE). Nine of the compounds behaved as stronger BuChE inhibitors than galantamine, one of the few drugs in clinical use against Alzheimer's disease. The most potent BuChE inhibitor (IC50 = 74 nM) was found to exhibit dual activities, as it also showed high activity (GI50 = 5.6 ± 1.1 µM) for inhibiting the growth of WiDr (colon cancer cells). In vitro studies on this dual-activity compound on Cerebellar Granule Neurons (CGNs) demonstrated that it displays no neurotoxicity.


Assuntos
Antineoplásicos , Butirilcolinesterase , Proliferação de Células , Inibidores da Colinesterase , Cumarínicos , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Butirilcolinesterase/metabolismo , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/síntese química , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Animais , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Aza/química , Compostos Aza/farmacologia , Compostos Aza/síntese química , Relação Dose-Resposta a Droga , Neurônios/efeitos dos fármacos
2.
J Enzyme Inhib Med Chem ; 38(1): 349-360, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36458374

RESUMO

The copper-catalysed azide-alkyne cycloaddition was applied to prepare three enantiomeric pairs of heterodimers containing a tacrine residue and a 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) or 1,4-dideoxy-1,4-imino-L-arabinitol (LAB) moiety held together via linkers of variable lengths containing a 1,2,3-triazole ring and 3, 4, or 7 CH2 groups. The heterodimers were tested as inhibitors of butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE). The enantiomeric heterodimers with the longest linkers exhibited the highest inhibition potencies for AChE (IC50 = 9.7 nM and 11 nM) and BuChE (IC50 = 8.1 nM and 9.1 nM). AChE exhibited the highest enantioselectivity (ca. 4-fold). The enantiomeric pairs of the heterodimers were found to be inactive (GI50 > 100 µM), or to have weak antiproliferative properties (GI50 = 84-97 µM) against a panel of human cancer cells.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Humanos , Tacrina/farmacologia , Alcinos
3.
Int J Mol Sci ; 24(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298353

RESUMO

The involvement of carbonic anhydrases (CAs) in a myriad of biological events makes the development of new inhibitors of these metalloenzymes a hot topic in current Medicinal Chemistry. In particular, CA IX and XII are membrane-bound enzymes, responsible for tumour survival and chemoresistance. Herein, a bicyclic carbohydrate-based hydrophilic tail (imidazolidine-2-thione) has been appended to a CA-targeting pharmacophore (arylsulfonamide, coumarin) with the aim of studying the influence of the conformational restriction of the tail on the CA inhibition. For this purpose, the coupling of sulfonamido- or coumarin-based isothiocyanates with reducing 2-aminosugars, followed by the sequential acid-promoted intramolecular cyclization of the corresponding thiourea and dehydration reactions, afforded the corresponding bicyclic imidazoline-2-thiones in good overall yield. The effects of the carbohydrate configuration, the position of the sulfonamido motif on the aryl fragment, and the tether length and substitution pattern on the coumarin were analysed in the in vitro inhibition of human CAs. Regarding sulfonamido-based inhibitors, the best template turned out to be a d-galacto-configured carbohydrate residue, meta-substitution on the aryl moiety (9b), with Ki against CA XII within the low nM range (5.1 nM), and remarkable selectivity indexes (1531 for CA I and 181.9 for CA II); this provided an enhanced profile in terms of potency and selectivity compared to more flexible linear thioureas 1-4 and the drug acetazolamide (AAZ), used herein as a reference compound. For coumarins, the strongest activities were found for substituents devoid of steric hindrance (Me, Cl), and short linkages; derivatives 24h and 24a were found to be the most potent inhibitors against CA IX and XII, respectively (Ki = 6.8, 10.1 nM), and also endowed with outstanding selectivity (Ki > 100 µM against CA I, II, as off-target enzymes). Docking simulations were conducted on 9b and 24h to gain more insight into the key inhibitor-enzyme interactions.


Assuntos
Anidrases Carbônicas , Neoplasias , Humanos , Estrutura Molecular , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Relação Estrutura-Atividade , Anidrase Carbônica IX/metabolismo , Anidrases Carbônicas/metabolismo , Antígenos de Neoplasias , Cumarínicos/farmacologia , Cumarínicos/química , Glicoconjugados , Carboidratos
4.
Bioorg Chem ; 129: 106127, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36113265

RESUMO

Human lactate dehydrogenase A (hLDHA) is one of the main enzymes involved in the pathway of oxalate synthesis in human liver and seems to contribute to the pathogenesis of disorders with endogenous oxalate overproduction, such as primary hyperoxaluria (PH), a rare life-threatening genetic disease. Recent published results on the knockdown of LDHA gene expression as a safe strategy to ameliorate oxalate build-up in PH patients are encouraging for an approach of hLDHA inhibition by small molecules as a potential pharmacological treatment. Thus, we now report on the synthesis and hLDHA inhibitory activity of a new family of compounds with 2,8-dioxabicyclo[3.3.1]nonane core (23-42), a series of twenty analogues to A-type proanthocyanidin natural products. Nine of them (25-27, 29-34) have shown IC50 values in the range of 8.7-26.7 µM, based on a UV spectrophotometric assay, where the hLDHA inhibition is measured according to the decrease in absorbance of the cofactor ß-NADH (340 nm). Compounds 25, 29, and 31 were the most active hLDHA inhibitors. In addition, the inhibitory activities of those nine compounds against the hLDHB isoform were also evaluated, finding that all of them were more selective inhibitors of hLDHA versus hLDHB. Among them, compounds 32 and 34 showed the highest selectivity. Moreover, the most active hLDHA inhibitors (25, 29, 31) were evaluated for their ability to decrease the oxalate production by hyperoxaluric mouse hepatocytes (PH1, PH2 and PH3) in vitro, and the relative oxalate output at 24 h was 16% and 19 % for compounds 25 and 31, respectively, in Hoga1-/- mouse primary hepatocyte cells (a model for PH3). These values improve those of the reference compound used (stiripentol). Compounds 25 and 31 have in common the presence of two hydroxyl groups at rings B and D and an electron-withdrawing group (NO2 or Br) at ring A, pointing to the structural features to be taken into account in future structural optimization.


Assuntos
Hiperoxalúria Primária , Camundongos , Animais , Humanos , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/metabolismo , Hiperoxalúria Primária/patologia , Lactato Desidrogenase 5 , Oxalatos/metabolismo , Alcanos
5.
Bioorg Chem ; 127: 105983, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35779403

RESUMO

Concerned by the urgent need to explore new approaches for the treatment of Alzheimer's disease, we herein describe the synthesis and evaluation of new multitarget molecules. In particular, we have focused our attention on modulating the activity of cholinesterases (AChE, BuChE) in order to restore the levels of the neurotransmitter acetylcholine, and of O-GlcNAcase (OGA), which is associated with hyperphosphorylation of tau protein, in turn related to the formation of neurofibrillary tangles in the brain. Specifically, we considered the possibility of using carbohydrate-fused 1,3-selenazolines, decorated with a 2-alkylamino or 2-alkoxy moieties. On the one hand, the presence of a selenium atom might be useful in modulating the intrinsic oxidative stress in AD. On the other hand, such bicyclic structure might behave as a transition state analogue of OGA hydrolysis. Moreover, upon protonation, it could mimic the ammonium cation of acetylcholine. The lead compound, bearing a propylamino moiety on C-2 position of the selenazoline motif, proved to be a good candidate against AD; it turned out to be a strong inhibitor of BuChE (IC50 = 0.46 µM), the most prevalent cholinesterase in advanced disease stages, with a roughly 4.8 selectivity index in connection to AChE (IC50 = 2.2 µM). This compound exhibited a roughly 12-fold increase in activity compared to galantamine, one of the currently marketed drugs against AD, and a selective AChE inhibitor, and virtually the same activity as rivastigmine, a selective BuChE inhibitor. Furthermore, it was also endowed with a strong inhibitory activity against human OGA, within the nanomolar range (IC50 = 0.053 µM for hOGA, >100 µM for hHexB), and, thus, with an outstanding selectivity (IC50(hHexB)/IC50(hOGA) > 1887). The title compounds also exhibited an excellent selectivity against a panel of glycosidases and a negligible cytotoxicity against tumor and non-tumor cell lines. Docking simulations performed on the three target enzymes (AChE, BuChE, and OGA) revealed the key interactions to rationalize the biological data.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Colinesterases , beta-N-Acetil-Hexosaminidases , Acetilcolina , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Carboidratos , Inibidores da Colinesterase/química , Colinesterases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Nootrópicos/farmacologia , Relação Estrutura-Atividade , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores
6.
J Enzyme Inhib Med Chem ; 37(1): 2395-2402, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36065944

RESUMO

The synthesis of four heterodimers in which the copper(I)-catalysed azide-alkyne cycloaddition was employed to connect a 1-deoxynojirimycin moiety with a benzotriazole scaffold is reported. The heterodimers were investigated as inhibitors against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The heterodimers displayed preferential inhibition (> 9) of BuChE over AChE in the micromolar concentration range (IC50 = 7-50 µM). For the most potent inhibitor of BuChE, Cornish-Bowden plots were used, which demonstrated that it behaves as a mixed inhibitor. Modelling studies of the same inhibitor demonstrated that the benzotriazole and 1-deoxynojirimycin moiety is accommodated in the peripheral anionic site and catalytic anionic site, respectively, of AChE. The binding mode to BuChE was different as the benzotriazole moiety is accommodated in the catalytic anionic site.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , 1-Desoxinojirimicina , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Triazóis
7.
J Enzyme Inhib Med Chem ; 37(1): 168-177, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894971

RESUMO

We have carried out the design, synthesis, and evaluation of a small library of 2-aminobenzoxazole-appended coumarins as novel inhibitors of tumour-related CAs IX and XII. Substituents on C-3 and/or C-4 positions of the coumarin scaffold, and on the benzoxazole moiety, together with the length of the linker connecting both units were modified to obtain useful structure-activity relationships. CA inhibition studies revealed a good selectivity towards tumour-associated CAs IX and XII (Ki within the mid-nanomolar range in most of the cases) in comparison with CAs I, II, IV, and VII (Ki > 10 µM); CA IX was found to be slightly more sensitive towards structural changes. Docking calculations suggested that the coumarin scaffold might act as a prodrug, binding to the CAs in its hydrolysed form, which is in turn obtained due to the esterase activity of CAs. An increase of the tether length and of the substituents steric hindrance was found to be detrimental to in vitro antiproliferative activities. Incorporation of a chlorine atom on C-3 of the coumarin moiety achieved the strongest antiproliferative agent, with activities within the low micromolar range for the panel of tumour cell lines tested.


Assuntos
Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Cumarínicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzoxazóis/síntese química , Benzoxazóis/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
8.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887037

RESUMO

(1) Background: carbonic anhydrases (CAs) are attractive targets for the development of new anticancer therapies; in particular, CAs IX and XII isoforms are overexpressed in numerous tumors. (2) Methods: following the tail approach, we have appended a hydrophobic aromatic tail to a pharmacophore responsible for the CA inhibition (aryl sulfonamide, coumarin). As a linker, we have used squaramides, featured with strong hydrogen bond acceptor and donor capacities. (3) Results: Starting from easily accessible dimethyl squarate, the title compounds were successfully obtained as crystalline solids, avoiding the use of chromatographic purifications. Interesting and valuable SARs could be obtained upon modification of the length of the hydrocarbon chain, position of the sulfonamido moiety, distance of the aryl sulfonamide scaffold to the squaramide, stereoelectronic effects on the aromatic ring, as well as the number and type of substituents on C-3 and C-4 positions of the coumarin. (4) Conclusions: For sulfonamides, the best profile was achieved for the m-substituted derivative 11 (Ki = 29.4, 9.15 nM, CA IX and XII, respectively), with improved selectivity compared to acetazolamide, a standard drug. Coumarin derivatives afforded an outstanding selectivity (Ki > 10,000 nM for CA I, II); the lead compound (16c) was a strong CA IX and XII inhibitor (Ki = 19.2, 7.23 nM, respectively). Docking simulations revealed the key ligand-enzyme interactions.


Assuntos
Neoplasias , Sulfonamidas , Antígenos de Neoplasias/química , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Cumarínicos/química , Cumarínicos/farmacologia , Estrutura Molecular , Neoplasias/metabolismo , Quinina/análogos & derivados , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacologia
9.
J Enzyme Inhib Med Chem ; 36(1): 138-146, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33228403

RESUMO

We have designed unprecedented cholinesterase inhibitors based on 1-deoxynojirimycin as potential anti-Alzheimer's agents. Compounds are comprised of three key structural motifs: the iminosugar, for interaction with cholinesterase catalytic anionic site (CAS); a hydrocarbon tether with variable lengths, and a fragment derived from 2-phenylethanol for promoting interactions with peripheral anionic site (PAS). Title compounds exhibited good selectivity towards BuChE, strongly depending on the substitution pattern and the length of the tether. The lead compounds were found to be strong mixed inhibitors of BuChE (IC50 = 1.8 and 1.9 µM). The presumptive binding mode of the lead compound was analysed using molecular docking simulations, revealing H-bond interactions with the catalytic subsite (His438) and CAS (Trp82 and Glu197) and van der Waals interactions with PAS (Thr284, Pro285, Asn289). They also lacked significant antiproliferative activity against tumour and non-tumour cells at 100 µM, making them promising new agents for tackling Alzheimer's disease through the cholinergic approach.


Assuntos
1-Desoxinojirimicina/farmacologia , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , 1-Desoxinojirimicina/síntese química , 1-Desoxinojirimicina/química , Animais , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Cavalos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
10.
Invest New Drugs ; 38(3): 584-598, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31177401

RESUMO

Microtubule targeting agents (MTAs) are extensively used in cancer treatment and many have achieved substantial clinical success. In recent years, targeting microtubules to inhibit cell division has become a widespread pharmaceutical approach for treatment of various cancer types. Nevertheless, the development of multidrug resistance (MDR) in cancer remains a major obstacle for successful application of these agents. Herein, we provided the evidence that CKT0353, α-branched α,ß-unsaturated ketone, possesses the capacity to successfully evade the MDR phenotype as an MTA. CKT0353 induced G2/M phase arrest, delayed cell division via spindle assembly checkpoint activation, disrupted the mitotic spindle formation and depolymerized microtubules in human breast, cervix, and colorectal carcinoma cells. Molecular docking analysis revealed that CKT0353 binds at the nocodazole binding domain of ß-tubulin. Furthermore, CKT0353 triggered apoptosis via caspase-dependent mechanism. In addition, P-glycoprotein overexpressing colorectal carcinoma cells showed higher sensitivity to this agent when compared to their sensitive counterpart, demonstrating the ability of CKT0353 to overcome this classic MDR mechanism involved in resistance to various MTAs. Taken together, these findings suggest that CKT0353 is an excellent candidate for further optimization as a therapeutic agent against tumors with MDR phenotype.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Paclitaxel/farmacologia , Moduladores de Tubulina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Células HeLa , Humanos , Microtúbulos/metabolismo , Mitose/efeitos dos fármacos , Simulação de Acoplamento Molecular/métodos , Neoplasias/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
11.
Am J Transplant ; 19(12): 3240-3249, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31152486

RESUMO

The mechanisms of tacrolimus-induced ß cell toxicity are unknown. Tacrolimus (TAC) and rapamycin (Rapa) both bind to FK506-binding protein 12 (FKBP12). Also, both molecular structures are similar. Because of this similarity, we hypothesized that TAC can also inhibit the mTOR signalling, constituting a possible mechanism of ß cell toxicity. Thus, we studied the effect of TAC and Rapa over the mTOR pathway, v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), and insulin secretion and content in INS-1 ß cells treated with or without glucose and palmitate and in islets from lean or obese rats. TAC and Rapa inhibited the mTOR pathway as reflected by lower levels of phospho-mTOR, phospo-p70S6K, and phospo-S6. The effect of Rapa was larger than TAC. Both drugs reduced the levels of MafA, insulin secretion, and content although these effects were larger with TAC. The changes on MafA and insulin metabolism were observed in cells on glucose and palmitate, in obese animals, and were absent in cells on maintenance medium or in lean animals. In silico docking and immunoprecipitation experiments confirmed that TAC can form a stable noncovalent interaction with FKBP12-mTOR. Thus, the mTOR inhibition may be a mechanism contributing to the diabetogenic effect of TAC.


Assuntos
Apoptose , Diabetes Mellitus Experimental/patologia , Células Secretoras de Insulina/patologia , Obesidade/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo , Tacrolimo/toxicidade , Magreza/fisiopatologia , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Imunossupressores/toxicidade , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ratos , Ratos Zucker , Transdução de Sinais
12.
J Biol Chem ; 291(36): 19068-78, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27422824

RESUMO

Post-translational modification of steroid receptors allows fine-tuning different properties of this family of proteins, including stability, activation, or interaction with co-regulators. Recently, a novel effect of phosphorylation on steroid receptor biology was described. Phosphorylation of human mineralocorticoid receptor (MR) on Ser-843, a residue placed on the ligand binding domain, lowers affinity for agonists, producing inhibition of gene transactivation. We now show that MR inhibition by phosphorylation occurs even at high agonist concentration, suggesting that phosphorylation may also impair coupling between ligand binding and receptor activation. Our results demonstrate that agonists are able to induce partial nuclear translocation of MR but fail to produce transactivation due at least in part to impaired co-activator recruitment. The inhibitory effect of phosphorylation on MR acts in a dominant-negative manner, effectively amplifying its functional effect on gene transactivation.


Assuntos
Núcleo Celular/metabolismo , Receptores de Mineralocorticoides/agonistas , Receptores de Mineralocorticoides/metabolismo , Ativação Transcricional/fisiologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Substituição de Aminoácidos , Animais , Células COS , Núcleo Celular/genética , Chlorocebus aethiops , Humanos , Camundongos , Mutação de Sentido Incorreto , Fosforilação , Ligação Proteica , Receptores de Mineralocorticoides/química , Receptores de Mineralocorticoides/genética , Ativação Transcricional/efeitos dos fármacos
13.
Bioorg Med Chem ; 22(15): 3887-90, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25002232

RESUMO

Sixteen triterpenoids (1-16), previously isolated from the aerial parts of the African medicinal plant Momordica balsamina or obtained by derivatization, were evaluated for their activity against liver stages of Plasmodium berghei, measuring the luminescence intensity in Huh-7 cells infected with a firefly luciferase-expressing P. berghei line, PbGFP-Luccon. Toxicity of compounds (1-16) was assessed on the same cell line through the fluorescence measurement of cell confluency. The highest activity was displayed by a derivative bearing two acetyl residues, karavoate B (7), which led to a dose-dependent decrease in the P. berghei infection rate, exhibiting a very significant activity at the lowest concentration employed (1 µM) and no toxicity towards the Huh-7 cells. It is noteworthy that, in previous studies, this compound was found to be a strong inhibitor of blood-stages of Plasmodium falciparum, thus displaying a dual-stage antimalarial activity.


Assuntos
Antimaláricos/química , Momordica/química , Triterpenos/química , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Momordica/metabolismo , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/metabolismo , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Triterpenos/isolamento & purificação , Triterpenos/farmacologia
14.
Biochem Pharmacol ; 222: 116059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364984

RESUMO

Isatin derivatives have attracted a lot of interest for their potential in the development of new anticancer drugs. A library of 38 isatin derivatives, created through an Ugi four-component reaction, underwent an initial screening in a panel of six human solid tumor cell lines. The four most active derivatives were then selected for further testing. These compounds showed selectivity towards the non-small cell lung cancer (NSCLC) cell line SW1573, whilst NSCLC A549 cells were barely affected. The combination of phenotypic assays, including wound healing, clonogenic and continuous live cell imaging provided a deeper understanding of the compounds' mode of action. In particular, the latter demonstrated that isatin derivatives were able to induce necroptosis in SW1573 cells. The kinetics of cell death showed that necroptosis appeared after 2.5 h of exposure, which could be delayed to 7 h when co-treated with necrostatin-1. Interaction between the isatin derivatives and the KRAS G12C protein variant was discarded after in silico studies. Further studies are warranted to identify the cellular target responsible for the observed selectivity among cell lines.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Isatina , Neoplasias Pulmonares , Humanos , Citotoxinas , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Isatina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Proliferação de Células , Estrutura Molecular
15.
Bioorg Med Chem Lett ; 23(19): 5382-4, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23953196

RESUMO

Having identified a novel human DNA topoisomerase IIα (TOP2) catalytic inhibitor from a small and structure-focused library of propargylic enol ethers, we decided to analyze if the chirality of these compounds plays a determinant role in their antiproliferative activity. In this study, we describe for the first time the synthesis of the corresponding enantiomers and the biological evaluation against a panel of representative human solid tumor cell lines. Experimental results show that chirality does not influence the reported antiproliferative activity of these compounds. Docking studies of corresponding enantiomers against TOP2 reinforce the finding that the biological effect is not chiral-dependent and that these family of compounds seem to act as TOP2 catalytic inhibitors.


Assuntos
Alcinos/química , Antígenos de Neoplasias/química , DNA Topoisomerases Tipo II/química , Proteínas de Ligação a DNA/química , Éteres/química , Simulação de Acoplamento Molecular , Alcenos/química , Alcenos/farmacologia , Alcinos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Proteínas de Ligação a DNA/antagonistas & inibidores , Éteres/farmacologia , Humanos , Modelos Moleculares , Óxido Nítrico Sintase Tipo III , Proteínas de Ligação a Poli-ADP-Ribose , Estereoisomerismo
16.
J Pharm Pharm Sci ; 15(1): 31-45, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22365086

RESUMO

PURPOSE: Aminated thioxanthones have recently been described as dual-acting agents: growth inhibitors of leukemia cell lines and P-glycoprotein (P-gp) inhibitors. To evaluate the selectivity profile of thioxanthones as inhibitors of multidrug resistance (MDR), their interaction with other ABC transporters, which were found to have a strong correlation with multidrug resistance, such as multidrug resistant proteins 1 (MRP1), 2 (MRP2) and 3 (MRP3) and breast cancer resistance protein (BCRP) was also evaluated. The interaction of thioxanthones with cytochrome P450 3A4 (CYP3A4) together with the prediction of their binding conformations and metabolism sites was also investigated. METHODS: The UIC2 monoclonal antibody-labelling assay was performed using P-gp overexpressing leukemia cells, K562Dox, incubated with eight thioxanthonic derivatives, in order to confirm their P-gp inhibitory activity. A colorimetric-based ATPase assay using membrane vesicles from mammalian cells overexpressing a selected human ABC transporter protein (P-gp, MRP1, MRP2, MRP3, or BCRP) was performed. To verify if some of the thioxanthonic derivatives were substrates or inhibitors of CYP3A4, a luciferin-based luminescence assay was performed. Finally, the in silico prediction of the most probable metabolism sites and docking studies of thioxanthones on CYP3A4 binding site were investigated. RESULTS: Thioxanthones interacted not only with P-gp but also with MRP and BCRP transporters. These compounds also interfere with CYP3A4 activity in vitro, in accordance with the in silico prediction. CONCLUSION: Thioxanthonic derivatives are multi-target compounds. A better characterization of the interactions of these compounds with classical resistance mechanisms may possibly identify improved treatment applications.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Tioxantenos/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Aminação , Citocromo P-450 CYP3A , Humanos , Células K562
17.
Eur J Med Chem ; 237: 114396, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500475

RESUMO

The synthesis and biological evaluation of double glycolate oxidase/lactate dehydrogenase inhibitors containing a salicylic acid moiety is described. The target compounds are obtained in an easily scalable two-step synthetic procedure. These compounds showed low micromolar IC50 values against the two key enzymes in the metabolism of glyoxylate. Mechanistically they behave as noncompetitive inhibitors against both enzymes and this fact is supported by docking studies. The biological evaluation also includes in vitro and in vivo assays in hyperoxaluric mice. The compounds are active against the three types of primary hyperoxalurias. Also, possible causes of adverse effects, such as cyclooxygenase inhibition or renal toxicity, have been studied and discarded. Altogether, this makes this chemotype with drug-like structure a good candidate for the treatment of primary hyperoxalurias.


Assuntos
Hiperoxalúria Primária , Oxalatos , Oxirredutases do Álcool , Animais , Hiperoxalúria Primária/metabolismo , Hiperoxalúria Primária/terapia , L-Lactato Desidrogenase/metabolismo , Fígado/metabolismo , Camundongos , Oxalatos/metabolismo , Ácido Salicílico/farmacologia
18.
Front Pharmacol ; 13: 831791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321325

RESUMO

Sdox is a hydrogen sulfide (H2S)-releasing doxorubicin effective in P-glycoprotein-overexpressing/doxorubicin-resistant tumor models and not cytotoxic, as the parental drug, in H9c2 cardiomyocytes. The aim of this study was the assessment of Sdox drug-like features and its absorption, distribution, metabolism, and excretion (ADME)/toxicity properties, by a multi- and transdisciplinary in silico, in vitro, and in vivo approach. Doxorubicin was used as the reference compound. The in silico profiling suggested that Sdox possesses higher lipophilicity and lower solubility compared to doxorubicin, and the off-targets prediction revealed relevant differences between Dox and Sdox towards several cancer targets, suggesting different toxicological profiles. In vitro data showed that Sdox is a substrate with lower affinity for P-glycoprotein, less hepatotoxic, and causes less oxidative damage than doxorubicin. Both anthracyclines inhibited CYP3A4, but not hERG currents. Unlike doxorubicin, the percentage of zebrafish live embryos at 72 hpf was not affected by Sdox treatment. In conclusion, these findings demonstrate that Sdox displays a more favorable drug-like ADME/toxicity profile than doxorubicin, different selectivity towards cancer targets, along with a greater preclinical efficacy in resistant tumors. Therefore, Sdox represents a prototype of innovative anthracyclines, worthy of further investigations in clinical settings.

19.
J Biol Chem ; 285(36): 27536-44, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20566635

RESUMO

The potential of antimicrobial peptides (AMPs) as an alternative to conventional therapies is well recognized. Insights into the biological and biophysical properties of AMPs are thus key to understanding their mode of action. In this study, the mechanisms adopted by two AMPs in disrupting the gram-negative Escherichia coli bacterial envelope were explored. BP100 is a short cecropin A-melittin hybrid peptide known to inhibit the growth of phytopathogenic gram-negative bacteria. pepR, on the other hand, is a novel AMP derived from the dengue virus capsid protein. Both BP100 and pepR were found to inhibit the growth of E. coli at micromolar concentrations. Zeta potential measurements of E. coli incubated with increasing peptide concentrations allowed for the establishment of a correlation between the minimal inhibitory concentration (MIC) of each AMP and membrane surface charge neutralization. While a neutralization-mediated killing mechanism adopted by either AMP is not necessarily implied, the hypothesis that surface neutralization occurs close to MIC values was confirmed. Atomic force microscopy (AFM) was then employed to visualize the structural effect of the interaction of each AMP with the E. coli cell envelope. At their MICs, BP100 and pepR progressively destroyed the bacterial envelope, with extensive damage already occurring 2 h after peptide addition to the bacteria. A similar effect was observed for each AMP in the concentration-dependent studies. At peptide concentrations below MIC values, only minor disruptions of the bacterial surface occurred.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Oligopeptídeos/farmacologia , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Proteínas do Capsídeo/química , Microscopia de Força Atômica , Oligopeptídeos/química
20.
Foods ; 8(12)2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805724

RESUMO

Terpenoids, including monoterpenoids (C10), norisoprenoids (C13), and sesquiterpenoids (C15), constitute a large group of plant-derived naturally occurring secondary metabolites with highly diverse chemical structures. A quantitative structure-activity relationship (QSAR) model to predict terpenoid toxicity and to evaluate the influence of their chemical structures was developed in this study by assessing in real time the toxicity of 27 terpenoid standards using the Gram-negative bioluminescent Vibrio fischeri. Under the test conditions, at a concentration of 1 µM, the terpenoids showed a toxicity level lower than 5%, with the exception of geraniol, citral, (S)-citronellal, geranic acid, (±)-α-terpinyl acetate, and geranyl acetone. Moreover, the standards tested displayed a toxicity level higher than 30% at concentrations of 50-100 µM, with the exception of (+)-valencene, eucalyptol, (+)-borneol, guaiazulene, ß-caryophellene, and linalool oxide. Regarding the functional group, terpenoid toxicity was observed in the following order: alcohol > aldehyde ~ ketone > ester > hydrocarbons. The CODESSA software was employed to develop QSAR models based on the correlation of terpenoid toxicity and a pool of descriptors related to each chemical structure. The QSAR models, based on t-test values, showed that terpenoid toxicity was mainly attributed to geometric (e.g., asphericity) and electronic (e.g., maximum partial charge for a carbon (C) atom (Zefirov's partial charge (PC)) descriptors. Statistically, the most significant overall correlation was the four-parameter equation with a training coefficient and test coefficient correlation higher than 0.810 and 0.535, respectively, and a square coefficient of cross-validation (Q2) higher than 0.689. According to the obtained data, the QSAR models are suitable and rapid tools to predict terpenoid toxicity in a diversity of food products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA