Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Environ Toxicol ; 38(4): 783-797, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36602393

RESUMO

Cadmium (Cd) is an environmental pollutant that increases hepatotoxicity and the risk of liver diseases. In the current study, we investigated the effect of a physiologically relevant, low concentration of Cd on the regulation of liver cancer cell proliferation, steatosis, and fibrogenic/oncogenic signaling. Exposure to low concentrations of Cd increased endogenous reactive oxygen species (ROS) production and enhanced cell proliferation in a human bipotent progenitor cell line HepaRG and hepatocellular carcinoma (HCC) cell lines. Acute exposure of Cd increased Jagged-1 expression and activated Notch signaling in HepaRG and HCC cells HepG2 and SK-Hep1. Cd activated AKT/mTOR signaling by increasing phosphorylation of AKT-S473 and mTOR-S-4448 residues. Moreover, a low concentration of Cd also promoted cell steatosis and induced fibrogenic signaling in HCC cells. Chronic exposure to low concentrations of Cd-activated Notch and AKT/mTOR signaling induced the expression of pro-inflammatory cytokines tumor necrosis factor-alpha (TNFα) and its downstream target TNF-α-Induced Protein 8 (TNFAIP8). RNA-Seq data revealed that chronic exposure to low concentrations of Cd modulated the expression of several fatty liver disease-related genes involved in cell steatosis/fibrosis in HepaRG and HepG2 cells. Collectively, our data suggest that low concentrations of Cd modulate steatosis along with fibrogenic and oncogenic signaling in HCC cells by activating Notch and AKT/mTOR pathways.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Cádmio/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral
2.
Xenobiotica ; 52(3): 301-311, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35473450

RESUMO

α-Pinene caused a concentration-responsive increase in bladder hyperplasia and decrease in sperm counts in rodents following inhalation exposure. Additionally, it formed a prospective reactive metabolite, α-pinene oxide.To provide human relevant context for data generated in animal models and explore potential mechanism, we undertook studies to investigate the metabolism of α-pinene to α-pinene oxide and mutagenicity of α-pinene and α-pinene oxide.α-Pinene oxide was formed in rat and human microsomes and hepatocytes with some species differences. Based on area under the concentration versus time curves, the formation of α-pinene oxide was up to 4-fold higher in rats than in humans.While rat microsomes cleared α-pinene oxide faster than human microsomes, the clearance of α-pinene oxide in hepatocytes was similar between species.α-Pinene was not mutagenic with or without induced rat liver S9 in Salmonella typhimurium or Escherichia coli when tested up to 10 000 µg/plate while α-pinene oxide was mutagenic at ≥25 µg/plate.α-Pinene was metabolised to α-pinene oxide under the conditions of the bacterial mutation assay although the concentration was approximately 3-fold lower than the lowest α-pinene oxide concentration that was positive in the assay, potentially explaining the lack of mutagenicity observed with α-pinene.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/toxicidade , Animais , Monoterpenos Bicíclicos , Dano ao DNA , Masculino , Microssomos Hepáticos/metabolismo , Testes de Mutagenicidade , Mutagênicos/metabolismo , Mutagênicos/farmacologia , Estudos Prospectivos , Ratos
3.
Toxicol Appl Pharmacol ; 412: 115395, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33421504

RESUMO

Vanadium is a ubiquitous environmental contaminant that exists in multiple oxidation states. Humans are exposed to vanadyl (V4+) and vanadate (V5+) from dietary supplements, food, and drinking water and hence there is a concern for adverse human health. The current investigation is aimed at identifying vanadium oxidation states in vitro and in vivo and internal concentrations following exposure of rats to vanadyl sulfate (V4+) or sodium metavanadate (V5+) via drinking water for 14 d. Investigations in simulated gastric and intestinal fluids showed that V4+ was stable in gastric fluid while V5+ was stable in intestinal fluid. Analysis of rodent plasma showed that the only vanadium present was V4+, regardless of the exposed compound suggesting conversion of V5+ to V4+ in vivo and/or instability of V5+ species in biological matrices. Plasma, blood, and liver concentrations of total vanadium, after normalizing for vanadium dose consumed, were higher in male and female rats following exposure to V5+ than to V4+. Following exposure to either V4+ or V5+, the total vanadium concentration in plasma was 2- to 3-fold higher than in blood suggesting plasma as a better matrix than blood for measuring vanadium in future work. Liver to blood ratios were 4-7 demonstrating significant tissue retention following exposure to both compounds. In conclusion, these data point to potential differences in absorption and disposition properties of V4+ and V5+ salts and may explain the higher sensitivity in rats following drinking water exposure to V5+ than V4+ and highlights the importance of internal dose determination in toxicology studies.


Assuntos
Vanadatos/farmacocinética , Compostos de Vanádio/farmacocinética , Administração Oral , Animais , Carga Corporal (Radioterapia) , Água Potável , Feminino , Suco Gástrico/química , Absorção Gastrointestinal , Secreções Intestinais/química , Fígado/metabolismo , Masculino , Oxirredução , Ratos Sprague-Dawley , Distribuição Tecidual , Toxicocinética , Vanadatos/administração & dosagem , Vanadatos/sangue , Vanadatos/toxicidade , Compostos de Vanádio/administração & dosagem , Compostos de Vanádio/sangue , Compostos de Vanádio/toxicidade
4.
Toxicol Appl Pharmacol ; 418: 115496, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33744279

RESUMO

The toxicokinetic behavior of α-pinene and its potential reactive metabolite, α-pinene oxide, was investigated following whole body inhalation exposure to 50 and 100 ppm α-pinene in rats and mice for 6 h per day for 7d. In both species and sexes, the maximum blood concentration (Cmax) increased more than proportionally while the increase in area under the concentration time curve (AUC) was proportional to the exposure concentration. When normalized to the calculated dose (D), both Cmax/D (male rats, 12.2-54.5; female rats, 17.4-74.1; male mice, 7.41-14.2; female mice, 6.59-13.0 (ng/mL)/(mg/kg)) and AUC/D (male rats, 28.9-31.1; female rats, 55.8-56.8; male mice, 18.1-19.4; female mice, 19.2-22.5 (h*ng/mL)/(mg/kg)) in rats were higher than in mice and in female rats were higher than in male rats; no sex difference was observed in mice. α-Pinene was eliminated from blood with half-lives between 12.2 and 17.4 h in rats and 6.18-19.4 h in mice. At the low dose, the ratio of α-pinene oxide to α-pinene, based on Cmax and AUC, respectively, was 0.200-0.237 and 0.279-0.615 in rats and 0.060-0.086 and 0.036-0.011 in mice demonstrating lower formation of the oxide in mice than in rats. At the high dose, the ratio decreased considerably in both species pointing to saturation of pathways leading to the formation of α-pinene oxide. α-Pinene and the oxide were quantified in the mammary glands of rats and mice with tissue to blood ratios of ≥23 demonstrating retention of these analytes in mammary glands. The findings of epoxide formation and species- and sex-differences in systemic exposure may be important in providing context and relating animal findings to human exposures.


Assuntos
Poluentes Atmosféricos/farmacocinética , Poluição do Ar em Ambientes Fechados , Monoterpenos Bicíclicos/farmacocinética , Ativação Metabólica , Poluentes Atmosféricos/toxicidade , Animais , Monoterpenos Bicíclicos/toxicidade , Feminino , Exposição por Inalação , Masculino , Glândulas Mamárias Animais/metabolismo , Camundongos , Ratos Sprague-Dawley , Medição de Risco , Fatores Sexuais , Especificidade da Espécie , Distribuição Tecidual
5.
Xenobiotica ; 51(2): 210-221, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32985913

RESUMO

We investigated the plasma toxicokinetic behavior of free (parent) and total (parent and conjugated forms) of bisphenol S (BPS) and bisphenol AF (BPAF) in plasma of adult male rats and mice following exposure via feed for 7 days to BPS (338, 1125, and 3375 ppm) or BPAF (338, 1125, and 3750 ppm). In rats, the exposure concentration-normalized maximum concentration [Cmax/D (ng/mL)/(ppm)] and area under the concentration time curve [AUC/D (h × ng/mL)/(ppm)] for free was higher for BPS (Cmax/D: 0.476-1.02; AUC/D: 3.58-8.26) than for BPAF (Cmax/D: 0.017-0.037; AUC/D:0.196-0.436). In mice, the difference in systemic exposure parameters between free BPS (Cmax/D: 0.376-0.459; AUC/D: 1.52-2.54) and free BPAF (Cmax/D: 0.111-0.165; AUC/D:0.846-1.09) was marginal. Elimination half-lives for free analytes (4.41-10.4 h) were comparable between species and analogues. When systemic exposure to free analyte was compared between species, in rats, BPS exposure was slightly higher but BPAF exposure was much lower than in mice. BPS and BPAF were highly conjugated; total BPS AUC values (rats ≥18-fold, mice ≥17-fold) and BPAF (rats ≥127-fold, mice ≥16-fold) were higher than corresponding free values. Data demonstrated that there are analogue and species differences in the kinetics of BPS and BPAF.


Assuntos
Compostos Benzidrílicos/farmacocinética , Substâncias Perigosas/farmacocinética , Fenóis/farmacocinética , Sulfonas/farmacocinética , Animais , Compostos Benzidrílicos/toxicidade , Substâncias Perigosas/toxicidade , Cinética , Masculino , Camundongos , Fenóis/toxicidade , Ratos , Sulfonas/toxicidade , Testes de Toxicidade , Toxicocinética
6.
J Appl Toxicol ; 41(7): 1007-1020, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33241551

RESUMO

Hydroxyurea (HU) is a valuable therapy for individuals with sickle cell anemia. With increased use of HU in children and throughout their lives, it is important to understand the potential effects of HU therapy on their development and fertility. Thus, studies were conducted to identify appropriate doses to examine long-term effects of prenatal and early postnatal HU exposure and to understand kinetics of HU at various life stages. Pregnant Sprague Dawley dams were administered HU (0-150 mg/kg/day) via oral gavage from gestation days 17 to 21 and during lactation. Pups were dosed with the same dose as their respective dam starting on postnatal day (PND) 10 and up to PND 34. There was minimal maternal toxicity, and no significant effects on littering at any dose of HU. Starting on ~PND 16, offspring displayed skin discoloration and alopecia at doses ≥75 mg/kg/day and lower body weight compared to controls at doses ≥100 mg/kg/day. Gestational transfer of HU was observed, but there was minimal evidence of lactational transfer. Our toxicokinetic studies suggest that the internal dose in offspring may be altered due to age, but not due to sex. The plasma area under the curve, a measure of systemic exposure, at doses tolerated by offspring was threefold to sevenfold lower than the internal therapeutic dose in humans. Therefore, strategies to establish clinically relevant exposures in animal studies are needed. Overall, these data are useful for the design of appropriate nonclinical studies in the future to evaluate the consequences of long-term HU treatment starting in childhood.


Assuntos
Antidrepanocíticos/toxicidade , Hidroxiureia/toxicidade , Toxicocinética , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Feminino , Hidroxiureia/farmacologia , Lactação/efeitos dos fármacos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley , Reprodução/efeitos dos fármacos
7.
Toxicol Appl Pharmacol ; 406: 115207, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853628

RESUMO

Bisphenol S (BPS) is a component of polyether sulfone used in a variety of industrial applications and consumer products. We investigated the plasma toxicokinetic (TK) behavior of free (unconjugated parent) and total (parent and conjugated) BPS in rats and mice following a single gavage administration (34, 110, or 340 mg/kg). In male rats, BPS was rapidly absorbed with free BPS maximum concentration (Cmax) reached at ≤2.27 h. Elimination of free BPS in male rats was dose-dependent with estimated half-lives of 5.77-11.9 h. Cmax and area under the concentration versus time curve (AUC) increased with dose although the increase in AUC was more than dose proportional. In male rats, total BPS Cmax was reached ≤2.77 h with both Cmax (≥ 10-fold) and AUC (≥ 15-fold) higher than free BPS demonstrating rapid and extensive conjugation of BPS. In male mice, the increase in Cmax and AUC of free BPS was dose-proportional; Cmax was higher and AUC was lower than in male rats. BPS was cleared more rapidly in male mice (half-life 2.86-4.21 h) compared to male rats (half-life 5.77-11.9 h). Similar to rats, total BPS Cmax (≥ 6-fold) and AUC (≥ 12-fold) were higher than corresponding free BPS. Oral bioavailability of free BPS was low to moderate (rats, ≤ 21%; mice, ≤ 19%). There were some species differences in TK parameters of free and total BPS and limited sex difference in rats and mice. In addition, there were dose-related effects of plasma TK parameters in rats.


Assuntos
Fenóis/farmacocinética , Sulfonas/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Disponibilidade Biológica , Feminino , Masculino , Camundongos , Fenóis/administração & dosagem , Fenóis/sangue , Fenóis/toxicidade , Ratos , Caracteres Sexuais , Sulfonas/administração & dosagem , Sulfonas/sangue , Sulfonas/toxicidade
8.
Toxicol Appl Pharmacol ; 379: 114690, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31344372

RESUMO

Sulfolane is a ground water contaminant near refinery sites. The objective of this work was to investigate the toxicokinetics and bioavailability of sulfolane in male and female Harlan Hsd:Sprague Dawley® SD® rats and B6C3F1/N mice following a single oral administration of 10, 30, or 100 mg/kg. Sulfolane was rapidly absorbed in rats with the maximum plasma concentration, Cmax, reached at ≤1.47 h. Although Cmax increased proportionally to the dose, the half-life of elimination increased with the dose and the area under the concentration versus time curve (AUC) increased more than proportionally to the dose. In male and female rats, plasma elimination half-life increased with the dose from 1.97 to 6.33 h. Absorption of sulfolane in mice following oral administration was more rapid than in rats with Cmax reached at ≤0.55 h. In addition, mice had a shorter half-life (≤ 1.25 h) and a lower AUC than rats. In male and female mice, both Cmax and AUC increased more than proportionally to the dose. Bioavailability of sulfolane was higher in rats (81-83%) than mice (59-63%) at 10 mg/kg; at 30 and 100 mg/kg, bioavailability >100% in both species and sexes suggesting that the saturation of metabolism and clearance processes of sulfolane may begin at a single oral dose of ~30 mg/kg. There was no apparent sex difference in toxicokinetic parameters of sulfolane in rats and mice. These data demonstrate that sulfolane was well-absorbed following oral administration with high bioavailability in rats and mice with some species differences, but no sex difference.


Assuntos
Tiofenos/toxicidade , Administração Intravenosa , Administração Oral , Animais , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Feminino , Meia-Vida , Masculino , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Especificidade da Espécie , Tiofenos/administração & dosagem , Tiofenos/farmacocinética
9.
Toxicol Appl Pharmacol ; 373: 39-47, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31022493

RESUMO

We investigated the toxicokinetics and bioavailability of bisphenol AF (BPAF) in male and female Harlan Sprague Dawley rats and B6C3F1/N mice following a single gavage administration of 34, 110, or 340 mg/kg. A validated analytical method was used to quantitate free (unconjugated parent) and total (unconjugated and conjugated) BPAF in plasma. BPAF was rapidly absorbed in rats with the maximum plasma concentration, Cmax, of free BPAF reached at ≤2.20 h. BPAF was cleared rapidly with a plasma elimination half-life of ≤3.35 h. Cmax and the area under the concentration versus time curve, AUC0-∞, increased proportionally to the dose. Total BPAF Cmax was reached ≤1.07 h in rats with both Cmax (≥27-fold) and AUC0-∞ (≥52-fold) much higher than corresponding free values demonstrating rapid and extensive conjugation of BPAF following oral administration. Absorption of BPAF following a 34 mg/kg gavage dose in mice was more rapid than in rats with free BPAF Cmax reached ≤0.455 h. Free BPAF was cleared rapidly in mice with an elimination half-life of ≤4.22 h. Similar to rats, total BPAF was much higher than corresponding free BPAF. There was no apparent sex-related effect in plasma toxicokinetic parameters of free or total BPAF in mice and rats. Bioavailability in rats was ~ 1% with no apparent dose-related effect. Bioavailability in mice was slightly higher than in rats (male ~ 6%, female 3%). These data demonstrate that BPAF was rapidly absorbed following gavage administration in rodents, rapidly and extensively conjugated with low bioavailability.


Assuntos
Compostos Benzidrílicos/farmacocinética , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/farmacocinética , Disruptores Endócrinos/toxicidade , Fenóis/farmacocinética , Fenóis/toxicidade , Administração Oral , Animais , Compostos Benzidrílicos/administração & dosagem , Disponibilidade Biológica , Disruptores Endócrinos/administração & dosagem , Feminino , Absorção Gastrointestinal , Meia-Vida , Masculino , Taxa de Depuração Metabólica , Camundongos , Fenóis/administração & dosagem , Ratos Sprague-Dawley , Medição de Risco , Fatores Sexuais , Especificidade da Espécie , Toxicocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA