Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nucleic Acids Res ; 51(20): 11318-11331, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37791874

RESUMO

We present the high-resolution structure of stem-loop 4 of the 5'-untranslated region (5_SL4) of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) genome solved by solution state nuclear magnetic resonance spectroscopy. 5_SL4 adopts an extended rod-like structure with a single flexible looped-out nucleotide and two mixed tandem mismatches, each composed of a G•U wobble base pair and a pyrimidine•pyrimidine mismatch, which are incorporated into the stem-loop structure. Both the tandem mismatches and the looped-out residue destabilize the stem-loop structure locally. Their distribution along the 5_SL4 stem-loop suggests a role of these non-canonical elements in retaining functionally important structural plasticity in particular with regard to the accessibility of the start codon of an upstream open reading frame located in the RNA's apical loop. The apical loop-although mostly flexible-harbors residual structural features suggesting an additional role in molecular recognition processes. 5_SL4 is highly conserved among the different variants of SARS-CoV-2 and can be targeted by small molecule ligands, which it binds with intermediate affinity in the vicinity of the non-canonical elements within the stem-loop structure.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Sequência de Bases , COVID-19/virologia , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , RNA Viral/química , SARS-CoV-2/química , SARS-CoV-2/genética
2.
Angew Chem Int Ed Engl ; 62(14): e202217171, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36748955

RESUMO

The outbreak of COVID-19 in December 2019 required the formation of international consortia for a coordinated scientific effort to understand and combat the virus. In this Viewpoint Article, we discuss how the NMR community has gathered to investigate the genome and proteome of SARS-CoV-2 and tested them for binding to low-molecular-weight binders. External factors including extended lockdowns due to the global pandemic character of the viral infection triggered the transition from locally focused collaborative research conducted within individual research groups to digital exchange formats for immediate discussion of unpublished results and data analysis, sample sharing, and coordinated research between more than 50 groups from 18 countries simultaneously. We discuss key lessons that might pertain after the end of the pandemic and challenges that we need to address.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Controle de Doenças Transmissíveis , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética
3.
Nucleic Acids Res ; 48(22): 12415-12435, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33167030

RESUMO

The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5' end, the ribosomal frameshift segment and the 3'-untranslated region (3'-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.


Assuntos
COVID-19/prevenção & controle , Espectroscopia de Ressonância Magnética/métodos , Conformação de Ácido Nucleico , RNA Viral/química , SARS-CoV-2/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , COVID-19/epidemiologia , COVID-19/virologia , Mudança da Fase de Leitura do Gene Ribossômico/genética , Genoma Viral/genética , Humanos , Modelos Moleculares , Pandemias , SARS-CoV-2/fisiologia
4.
Angew Chem Int Ed Engl ; 60(35): 19191-19200, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34161644

RESUMO

SARS-CoV-2 contains a positive single-stranded RNA genome of approximately 30 000 nucleotides. Within this genome, 15 RNA elements were identified as conserved between SARS-CoV and SARS-CoV-2. By nuclear magnetic resonance (NMR) spectroscopy, we previously determined that these elements fold independently, in line with data from in vivo and ex-vivo structural probing experiments. These elements contain non-base-paired regions that potentially harbor ligand-binding pockets. Here, we performed an NMR-based screening of a poised fragment library of 768 compounds for binding to these RNAs, employing three different 1 H-based 1D NMR binding assays. The screening identified common as well as RNA-element specific hits. The results allow selection of the most promising of the 15 RNA elements as putative drug targets. Based on the identified hits, we derive key functional units and groups in ligands for effective targeting of the RNA of SARS-CoV-2.


Assuntos
Genoma , RNA Viral/metabolismo , SARS-CoV-2/genética , Bibliotecas de Moléculas Pequenas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Ligantes , Estrutura Molecular , Conformação de Ácido Nucleico , Espectroscopia de Prótons por Ressonância Magnética , RNA Viral/química , Bibliotecas de Moléculas Pequenas/química
6.
J Nat Prod ; 79(10): 2718-2725, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27731998

RESUMO

Three secondary fungal metabolites 1-3 with a benzo[b]naphtho[2,1-d]furan skeleton were isolated from submerged cultures of the ascomycete Allantophomopsis lycopodina. The NMR-based structure elucidation was challenging due to a low H/C ratio of only 0.64 and 0.68, respectively. NMR measurements in two different solvents and the use of NMR experiments such as HSQC-TOCSY and LR-HSQMBC proved to be helpful in this respect. The proposed structures obtained from the comprehensive analysis of the NMR data were verified by comparison of recorded and computed NMR chemical shifts from quantum chemical calculations of several constitutional isomers and were further analyzed with the aid of the DP4 and DP4+ probabilities.


Assuntos
Ascomicetos/química , Compostos de Terfenil/isolamento & purificação , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Compostos de Terfenil/química
7.
Bioorg Med Chem Lett ; 24(24): 5576-5580, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25466178

RESUMO

Basic molecular building blocks such as benzene rings, amidines, guanidines, and amino groups have been combined in a systematic way to generate ligand candidates for HIV-1 TAR RNA. Ranking of the resulting compounds was achieved in a fluorimetric Tat-TAR competition assay. Although simple molecules such as phenylguanidine are inactive, few iteration steps led to a set of ligands with IC50 values ranging from 40 to 150 µM. 1,7-Diaminoisoquinoline 17 and 2,4,6-triaminoquinazoline 22 have been further characterized by NMR titrations with TAR RNA. Compound 22 is bound to TAR at two high affinity sites and shows slow exchange between the free ligand and the RNA complex. These results encourage investigations of dimeric ligands built from two copies of compound 22 or related heterocycles.


Assuntos
HIV-1/metabolismo , Bibliotecas de Moléculas Pequenas/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Repetição Terminal Longa de HIV , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
8.
RSC Med Chem ; 15(1): 165-177, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38283228

RESUMO

Development of new antiviral medication against the beta-coronavirus SARS-CoV-2 (SCoV2) is actively being pursued. Both NMR spectroscopy and crystallography as structural screening technologies have been utilised to screen the viral proteome for binding to fragment libraries. Here, we report on NMR screening of elements of the viral RNA genome with two different ligand libraries using 1H-NMR-screening experiments and 1H and 19F NMR-screening experiments for fluorinated compounds. We screened against the 5'-terminal 119 nucleotides located in the 5'-untranslated region of the RNA genome of SCoV2 and further dissected the four stem-loops into its constituent RNA elements to test specificity of binding of ligands to shorter and longer viral RNA stretches. The first library (DRTL-F library) is enriched in ligands binding to RNA motifs, while the second library (DSI-poised library) represents a fragment library originally designed for protein screening. Conducting screens with two different libraries allows us to compare different NMR screening methodologies, describe NMR screening workflows, validate the two different fragment libraries, and derive initial leads for further downstream medicinal chemistry optimisation.

9.
Acc Chem Res ; 44(12): 1292-301, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21894962

RESUMO

Among the three major classes of biomacromolecules (DNA, RNA, and proteins) RNA's pronounced dynamics are the most explicitly linked to its wide variety of functions, which include catalysis and the regulation of transcription, translation, and splicing. These functions are mediated by a range of RNA biomachinery, including such varied examples as macromolecular noncoding RNAs, microRNAs, small interfering RNAs, riboswitch RNAs, and RNA thermometers. In each case, the functional dynamics of an interconversion is characterized by an associated rate constant. In this Account, we provide an introduction to NMR spectroscopic characterization of the landscape of RNA dynamics. We introduce strategies for measuring NMR parameters at various time scales as well as the underlying models for describing the corresponding rate constants. RNA exhibits significant dynamic motion, which can be modulated by (i) intermolecular interactions, including specific and nonspecific binding of ions (such as Mg(2+) and tertiary amines), (ii) metabolites in riboswitches or RNA aptamers, and (iii) macromolecular interactions within ribonucleic protein particles, including the ribosome and the spliceosome. Our understanding of the nature of these dynamic changes in RNA targets is now being incorporated into RNA-specific approaches in the design of RNA inhibitors. Interactions of RNA with proteins, other RNAs, or small molecules often occur through binding mechanisms that follow an induced fit mechanism or a conformational selection mechanism, in which one of several populated RNA conformations is selected through ligand binding. The extent of functional dynamics, including the kinetic formation of a specific RNA tertiary fold, is dependent on the messenger RNA (mRNA) chain length. Thus, during de novo synthesis of mRNA, both in prokaryotes and eukaryotes, nascent mRNA of various lengths will adopt different secondary and tertiary structures. The speed of transcription has a critical influence on the functional dynamics of the RNA being synthesized. In addition to modulating the local dynamics of a conformational RNA ensemble, a given RNA sequence may adopt more than one global, three-dimensional structure. RNA modification is one way to select among these alternative structures, which are often characterized by nearly equal stability, but with high energy barriers for conformational interconversion. The refolding of different secondary and tertiary structures has been found to be a major regulatory mechanism for transcription and translation. These conformational transitions can be characterized with NMR spectroscopy, for any given RNA sequence, in response to external stimuli.


Assuntos
Espectroscopia de Ressonância Magnética , RNA/química , RNA/metabolismo , Íons/química , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas/metabolismo , Ribossomos/metabolismo , Riboswitch , Spliceossomos/metabolismo
10.
Biomol NMR Assign ; 16(1): 17-25, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35178672

RESUMO

The ongoing pandemic of the respiratory disease COVID-19 is caused by the SARS-CoV-2 (SCoV2) virus. SCoV2 is a member of the Betacoronavirus genus. The 30 kb positive sense, single stranded RNA genome of SCoV2 features 5'- and 3'-genomic ends that are highly conserved among Betacoronaviruses. These genomic ends contain structured cis-acting RNA elements, which are involved in the regulation of viral replication and translation. Structural information about these potential antiviral drug targets supports the development of novel classes of therapeutics against COVID-19. The highly conserved branched stem-loop 5 (SL5) found within the 5'-untranslated region (5'-UTR) consists of a basal stem and three stem-loops, namely SL5a, SL5b and SL5c. Both, SL5a and SL5b feature a 5'-UUUCGU-3' hexaloop that is also found among Alphacoronaviruses. Here, we report the extensive 1H, 13C and 15N resonance assignment of the 37 nucleotides (nts) long sequence spanning SL5b and SL5c (SL5b + c), as basis for further in-depth structural studies by solution NMR spectroscopy.


Assuntos
COVID-19 , SARS-CoV-2 , Regiões 5' não Traduzidas , Humanos , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular
11.
Biomol NMR Assign ; 15(2): 335-340, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33928512

RESUMO

The SARS-CoV-2 virus is the cause of the respiratory disease COVID-19. As of today, therapeutic interventions in severe COVID-19 cases are still not available as no effective therapeutics have been developed so far. Despite the ongoing development of a number of effective vaccines, therapeutics to fight the disease once it has been contracted will still be required. Promising targets for the development of antiviral agents against SARS-CoV-2 can be found in the viral RNA genome. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are highly conserved among Betacoronaviruses and contain structured RNA elements involved in the translation and replication of the viral genome. The 40 nucleotides (nt) long highly conserved stem-loop 4 (5_SL4) is located within the 5'-untranslated region (5'-UTR) important for viral replication. 5_SL4 features an extended stem structure disrupted by several pyrimidine mismatches and is capped by a pentaloop. Here, we report extensive 1H, 13C, 15N and 31P resonance assignments of 5_SL4 as the basis for in-depth structural and ligand screening studies by solution NMR spectroscopy.


Assuntos
Regiões 5' não Traduzidas , Ressonância Magnética Nuclear Biomolecular , SARS-CoV-2/genética , Sequências Repetidas Invertidas/genética
12.
Biomol NMR Assign ; 15(2): 467-474, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34453696

RESUMO

The stem-loop (SL1) is the 5'-terminal structural element within the single-stranded SARS-CoV-2 RNA genome. It is formed by nucleotides 7-33 and consists of two short helical segments interrupted by an asymmetric internal loop. This architecture is conserved among Betacoronaviruses. SL1 is present in genomic SARS-CoV-2 RNA as well as in all subgenomic mRNA species produced by the virus during replication, thus representing a ubiquitous cis-regulatory RNA with potential functions at all stages of the viral life cycle. We present here the 1H, 13C and 15N chemical shift assignment of the 29 nucleotides-RNA construct 5_SL1, which denotes the native 27mer SL1 stabilized by an additional terminal G-C base-pair.


Assuntos
Regiões 5' não Traduzidas , Ressonância Magnética Nuclear Biomolecular , SARS-CoV-2/genética , Conformação de Ácido Nucleico , RNA Líder para Processamento
13.
Front Mol Biosci ; 8: 653148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041264

RESUMO

The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium's collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.

14.
Nucleic Acids Res ; 36(6): 1928-40, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18272534

RESUMO

In a combined NMR/MD study, the temperature-dependent changes in the conformation of two members of the RNA YNMG-tetraloop motif (cUUCGg and uCACGg) have been investigated at temperatures of 298, 317 and 325 K. The two members have considerable different thermal stability and biological functions. In order to address these differences, the combined NMR/MD study was performed. The large temperature range represents a challenge for both, NMR relaxation analysis (consistent choice of effective bond length and CSA parameter) and all-atom MD simulation with explicit solvent (necessity to rescale the temperature). A convincing agreement of experiment and theory is found. Employing a principle component analysis of the MD trajectories, the conformational distribution of both hairpins at various temperatures is investigated. The ground state conformation and dynamics of the two tetraloops are indeed found to be very similar. Furthermore, both systems are initially destabilized by a loss of the stacking interactions between the first and the third nucleobase in the loop region. While the global fold is still preserved, this initiation of unfolding is already observed at 317 K for the uCACGg hairpin but at a significantly higher temperature for the cUUCGg hairpin.


Assuntos
RNA/química , Temperatura , Sequência de Bases , Simulação por Computador , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico
15.
Chembiochem ; 10(9): 1490-4, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19444830

RESUMO

Target TAR by NMR: Tripeptides containing arginines as terminal residues and non-natural amino acids as central residues are good leads for drug design to target the HIV trans-activation response element (TAR). The structural characterization of the RNA-ligand complex by NMR spectroscopy reveals two specific binding sites that are located at bulge residue U23 and around the pyrimidine-stretch U40-C41-U42 directly adjacent to the bulge.


Assuntos
Repetição Terminal Longa de HIV , Ligantes , RNA Viral/química , Sítios de Ligação , Conformação de Ácido Nucleico , Peptídeos/química
18.
ChemMedChem ; 3(5): 749-55, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18205165

RESUMO

The interaction of the nucleocapsid NCp7 of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein with the RNA packaging signal Psi ensures specific encapsidation of the dimeric full length viral genome into nascent virus particles. Being an essential step in the HIV-1 replication cycle, specific genome encapsidation represents a promising target for therapeutic intervention. We previously selected peptides binding to HIV-1 Psi-RNA or stem loops (SL) thereof by phage display. Herein, we describe synthesis of peptide variants of the consensus HWWPWW motif on membrane supports to optimize Psi-RNA binding. The optimized peptide, psi-pepB, was characterized in detail with respect to its conformation and binding properties for the SL3 of the Psi packaging signal by NMR and tryptophan fluorescence quenching. Functional analysis revealed that psi-pepB caused a strong reduction of virus release by infected cells as monitored by reduced transduction efficiencies, capsid p24 antigen levels, and electron microscopy. Thus, this peptide shows antiviral activity and could serve as a lead compound to develop new drugs targeting HIV-1.


Assuntos
Fármacos Anti-HIV/farmacologia , Produtos do Gene gag/química , Genoma Viral , HIV-1/efeitos dos fármacos , Peptídeos/farmacologia , RNA Viral/química , Montagem de Vírus , Sequência de Aminoácidos , Linhagem Celular , HIV-1/genética , HIV-1/fisiologia , Humanos , Dados de Sequência Molecular
19.
J Biomol NMR ; 39(1): 17-29, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17641824

RESUMO

A novel NMR pulse sequence is introduced to determine the glycosidic torsion angle chi in (13)C,(15)N-labeled oligonucleotides. The quantitative Gamma-HCNCH measures the dipolar cross-correlated relaxation rates Gamma(DD,DD)(C8H8,C1'H1') (pyrimidines) and Gamma(DD,DD)(C6H6,C1'H1') (purines). Cross-correlated relaxation rates of a (13)C,(15)N-labeled RNA 14mer containing a cUUCGg tetraloop were determined and yielded chi-angles that agreed remarkably well with data derived from the X-ray structure of the tetraloop. In addition, the method was applied to the larger stemloop D (SLD) subdomain of the Coxsackievirus B3 cloverleaf 30mer RNA and the effect of anisotropic rotational motion was examined for this molecule. It could be shown that the chi-angle determination especially for nucleotides in the anti conformation was very accurate and the method was ideally suited to distinguish between the syn and the anti-conformation of all four types of nucleotides.


Assuntos
Glicosídeos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Oligorribonucleotídeos/química , Rotação , Adenosina/química , Sequência de Bases , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Oligorribonucleotídeos/genética , Pirimidinas/química , RNA Viral/química , RNA Viral/genética , Soluções
20.
Chembiochem ; 8(15): 1850-6, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17886825

RESUMO

Non-natural amino acids with aromatic or heteroaromatic side chains were incorporated into tripeptides of the general structure Arg-X-Arg and tested as ligands of the HIV RNA element TAR. Some of these compounds could compete efficiently with the association of TAR and Tat and downregulated a TAR-controlled reporter gene in HeLa cells. Peptide 7, which contains a 2-pyrimidinyl-alkyl chain, also inhibited the spread of HIV-1 in cell cultures. NMR studies of 7 bound to HIV-2-TAR gave evidence for contacts in the bulge region.


Assuntos
Aminoácidos/farmacologia , Repetição Terminal Longa de HIV/efeitos dos fármacos , HIV/efeitos dos fármacos , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Produtos do Gene tat do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Alcanos/química , Alcanos/farmacologia , Aminoácidos/química , Arginina/análogos & derivados , Arginina/farmacologia , Células Cultivadas , HIV/crescimento & desenvolvimento , HIV-1/efeitos dos fármacos , HIV-1/crescimento & desenvolvimento , HIV-2/efeitos dos fármacos , HIV-2/crescimento & desenvolvimento , Células HeLa , Humanos , Hidrocarbonetos Aromáticos/química , Hidrocarbonetos Aromáticos/farmacologia , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Químicos , Oligopeptídeos/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , RNA Viral/química , RNA Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA