RESUMO
BACKGROUND: Early onset dementias (EOD) are rare neurodegenerative dementias that present before 65 years. Genetic factors have a substantially higher pathogenetic contribution in EOD patients than in late onset dementia. OBJECTIVE: To identify known and/or novel rare variants in major candidate genes associated to EOD by high-throughput sequencing. Common-risk variants of apolipoprotein E (APOE) and prion protein (PRNP) genes were also assessed. METHODS: We studied 22 EOD patients recruited in Memory Clinics, in the context of studies investigating genetic forms of dementia. Two methodological approaches were applied for the target-Next Generation Sequencing (NGS) analysis of these patients. In addition, we performed progranulin plasma dosage, C9Orf72 hexanucleotide repeat expansion analysis, and APOE genotyping. RESULTS: We detected three rare known pathogenic mutations in the GRN and PSEN2 genes and eleven unknown-impact mutations in the GRN, VCP, MAPT, FUS, TREM2, and NOTCH3 genes. Six patients were carriers of only common risk variants (APOE and PRNP), and one did not show any risk mutation/variant. Overall, 69% (nâ=â9) of our early onset Alzheimer's disease (EAOD) patients, compared with 34% (nâ=â13) of sporadic late onset Alzheimer's disease (LOAD) patients and 27% (nâ=â73) of non-affected controls (ADNI, whole genome data), were carriers of at least two rare/common risk variants in the analyzed candidate genes panel, excluding the full penetrant mutations. CONCLUSION: This study suggests that EOD patients without full penetrant mutations are characterized by higher probability to carry polygenic risk alleles that patients with LOAD forms. This finding is in line with recently reported evidence, thus suggesting that the genetic risk factors identified in LOAD might modulate the risk also in EOAD.
Assuntos
Demência/genética , Sequenciamento de Nucleotídeos em Larga Escala/tendências , Idade de Início , Idoso , Alelos , Apolipoproteínas E/genética , Proteína C9orf72/genética , Feminino , Estudos de Associação Genética , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Presenilina-2/genética , Proteínas Priônicas/genética , Estudos Retrospectivos , Medição de RiscoRESUMO
Huntington's disease is an inherited disorder caused by expanded stretch of consecutive trinucleotides (cytosine-adenosine-guanine, CAG) within the first exon of the huntingtin (HTT) gene on chromosome 4 (p16.3). The mutated huntingtin (mHTT) gains toxic function, probably through mechanisms that involve aberrant interactions in several pathways, causing cytotoxicity. Pathophysiology of disease involves several tissues; indeed it has been shown that there is a broad toxic effect of mHTT in the peripheral tissue of patients with HD, not only in the central nervous system. In this study we compared gene expression profiles (GEP) of HD fibroblasts and matched controls using microarray technology. We used RT-PCR to test the consistency of the microarray data and we found four genes up-regulated in HD patients with respect to control individuals. The genes appear to be involved in different pathways that have been shown to be perturbed even in HD models and patients. Although our study is preliminary and has to be extended to a larger cohort of HD patients and controls, nevertheless it shows that gene expression profiles seem to be altered in the fibroblasts of HD patients. Validation of the differential expressions at the protein level is required to ascertain if this cell type can be considered a suitable model for the identification of HD biomarkers.
Assuntos
Fibroblastos/fisiologia , Doença de Huntington/patologia , Transcriptoma/fisiologia , Regulação para Cima/genética , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Adulto , Idoso , Feminino , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Reprodutibilidade dos Testes , Expansão das Repetições de Trinucleotídeos/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima/fisiologia , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismoRESUMO
Fibronectin (FN) is an extracellular matrix (ECM) protein involved in tumor growth and metastasis. Five human FN cDNA segments encoding for FN fragments, all starting with the II1 repeat and ending with different C-terminal extensions, have been stably expressed in chick embryo fibroblasts (CEF). These FN cDNAs induce the formation of an organized ECM in CEF as long as they retain a sequence coding for a 13-amino acid stretch (FN13), with collagen binding activity, localized between type II2 and I7 repeats. An FN13 synthetic peptide induces in control CEF the assembly of an FN-ECM comparable with that observed in CEF-expressing FN fragments. The activity of FN13 is specific for its amino acid sequence, although the cysteine present in the 6th position can be substituted with a polar serine without affecting the induction of a fibrillar FN-ECM. A less fibrillar matrix is induced by FN13-modified peptides in which the cysteine is methylated or substituted by a non-polar alanine. FN13 induces the assembly of an FN-ECM also in Rous sarcoma virus-transformed CEF lacking the ECM and in hepatoma (SK-Hep1) and fibrosarcoma (HT-1080) human cell lines. FN13 also promotes the adhesion of CEF and Rous sarcoma virus-CEF at levels comparable with those obtained with purified intact FN. Finally, FN13 inhibits the migratory and invasive properties of tumorigenic cells, whereas intact FN favors their migration. All FN13-modified peptides show similar effects, although with reduced efficiency. None of these activities is supported by a scrambled peptide. These data suggest a possible role of FN13 in tumor growth and metastasis inhibition and its possible use as anti-tumorigenic agent.