RESUMO
Repair of tissue damaged in diabetic wounds is essential to minimize the cases of amputation of the limbs in millions of diabetic people around the world. Although the all-trans retinoic acid (ATRA) is described as a potential wound healing agent, however its effects are controversial due to adverse reactions that may impair the wound healing during the treatment schedules. Our aim was to design and characterize an ATRA-loaded solid lipid nanoparticles surrounded by chitosan film to promote an ATRA controlled release and to evaluate its effectiveness in promoting wound healing in a diabetic mouse model. The SLN-ATRA were developed using biocompatible lipids without using organic solvent. The SLN-ATRA had high drug entrapment efficiency (98.0 %) and low polydispersity index (PDI) and average diameter, respectively, 0.24 ± 0.02 and 83.0 ± 6 nm. The transmission electron microscope (TEM) image presented that the SLN-ATRA were homogeneous in size and had spherical structures. The incorporation of SLN-ATRA in the chitosan films propitiated a homogeneous distribution of the drug and a controlled drug release. Furthermore, in vivo assay proved that chitosan films containing SLN-ATRA accelerated the closure of wounds of diabetic mice when compared to the control chitosan films without ATRA. SLN-ATRA chitosan films also reduced leukocyte infiltrate in the wound bed, improved collagen deposition, and reduced scar tissue. No sign of skin irritation was observed. These results indicated that SLN-ATRA surrounded in chitosan films are a promising candidate to treat diabetic wounds, improving tissue healing.