Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neurosci ; 33(6): 2582-92, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23392686

RESUMO

The biolipid sphingosine-1-phosphate (S1P) is an essential modulator of innate immunity, cell migration, and wound healing. It is released locally upon acute tissue injury from endothelial cells and activated thrombocytes and, therefore, may give rise to acute post-traumatic pain sensation via a yet elusive molecular mechanism. We have used an interdisciplinary approach to address this question, and we find that intradermal injection of S1P induced significant licking and flinching behavior in wild-type mice and a dose-dependent flare reaction in human skin as a sign of acute activation of nociceptive nerve terminals. Notably, S1P evoked a small excitatory ionic current that resulted in nociceptor depolarization and action potential firing. This ionic current was preserved in "cation-free" solution and blocked by the nonspecific Cl(-) channel inhibitor niflumic acid and by preincubation with the G-protein inhibitor GDP-ß-S. Notably, S1P(3) receptor was detected in virtually all neurons in human and mouse DRG. In line with this finding, S1P-induced neuronal responses and spontaneous pain behavior in vivo were substantially reduced in S1P(3)(-/-) mice, whereas in control S1P(1) floxed (S1P(1)(fl/fl)) mice and mice with a nociceptor-specific deletion of S1P(1)(-/-) receptor (SNS-S1P(1)(-/-)), neither the S1P-induced responses in vitro nor the S1P-evoked pain-like behavior was altered. Therefore, these findings indicate that S1P evokes significant nociception via G-protein-dependent activation of an excitatory Cl(-) conductance that is largely mediated by S1P(3) receptors present in nociceptors, and point to these receptors as valuable therapeutic targets for post-traumatic pain.


Assuntos
Lisofosfolipídeos/toxicidade , Medição da Dor/métodos , Dor/metabolismo , Receptores de Lisoesfingolipídeo/fisiologia , Esfingosina/análogos & derivados , Adulto , Animais , Células Cultivadas , Método Duplo-Cego , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dor/induzido quimicamente , Medição da Dor/efeitos dos fármacos , Esfingosina/toxicidade
2.
Biochim Biophys Acta ; 1828(2): 193-200, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23022492

RESUMO

In this work, we illustrate the ability of the prokaryotic potassium channel KcsA to assemble into a variety of supramolecular clusters of defined sizes containing the tetrameric KcsA as the repeating unit. Such clusters, particularly the larger ones, are markedly detergent-labile and thus, disassemble readily upon exposure to the detergents commonly used in protein purification or conventional electrophoresis analysis. This is a reversible process, as cluster re-assembly occurs upon detergent removal and without the need of added membrane lipids. Interestingly, the dimeric ensemble between two tetrameric KcsA molecules are quite resistant to detergent disassembly to individual KcsA tetramers and along with the latter, are likely the basic building blocks through which the larger clusters are organized. As to the proteins domains involved in clustering, we have observed disassembly of KcsA clusters by SDS-like alkyl sulfates. As these amphiphiles bind to inter-subunit, "non-annular" sites on the protein, these observations suggest that such sites also mediate channel-channel interactions leading to cluster assembly.


Assuntos
Proteínas de Bactérias/química , Detergentes/farmacologia , Canais de Potássio/química , Proteínas de Bactérias/metabolismo , Reagentes de Ligações Cruzadas/química , Relação Dose-Resposta a Droga , Eletroforese/métodos , Eletroforese em Gel Bidimensional/métodos , Eletroforese em Gel de Poliacrilamida , Lipídeos/química , Modelos Moleculares , Canais de Potássio/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
3.
J Med Chem ; 63(5): 2372-2390, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31790581

RESUMO

Neuropathic pain (NP) is a complex chronic pain state with a prevalence of almost 10% in the general population. Pharmacological options for NP are limited and weakly effective, so there is a need to develop more efficacious NP attenuating drugs. Activation of the type 1 lysophosphatidic acid (LPA1) receptor is a crucial factor in the initiation of NP. Hence, it is conceivable that a functional antagonism strategy could lead to NP mitigation. Here we describe a new series of LPA1 agonists among which derivative (S)-17 (UCM-05194) stands out as the most potent and selective LPA1 receptor agonist described so far (Emax = 118%, EC50 = 0.24 µM, KD = 19.6 nM; inactive at autotaxin and LPA2-6 receptors). This compound induces characteristic LPA1-mediated cellular effects and prompts the internalization of the receptor leading to its functional inactivation in primary sensory neurons and to an efficacious attenuation of the pain perception in an in vivo model of NP.


Assuntos
Analgésicos/química , Analgésicos/uso terapêutico , Neuralgia/tratamento farmacológico , Receptores de Ácidos Lisofosfatídicos/agonistas , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Descoberta de Drogas , Feminino , Humanos , Hidrocarbonetos Aromáticos/química , Hidrocarbonetos Aromáticos/uso terapêutico , Camundongos Endogâmicos C57BL , Modelos Moleculares , Neuralgia/metabolismo , Percepção da Dor/efeitos dos fármacos , Ratos Wistar , Receptores de Ácidos Lisofosfatídicos/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo
4.
Neurochem Int ; 53(5): 148-54, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18694792

RESUMO

N-Methyl-d-aspartate (NMDA) receptors play a critical role in the brain stimulating synaptic plasticity and mediating neurodegeneration; a neuroprotective role has also been described, but its molecular mechanisms in hippocampus are under study. Here, we report that in primary cultures of rat hippocampal neurons exposure to low micromolar NMDA concentrations are neuroprotective against excitotoxic insults, while high micromolar NMDA concentrations provoke neuronal death. Molecular analysis reveals that a toxic concentration of NMDA induced a transient phosphorylation of cAMP-response element-binding protein (pCREB) in 2 min that rapidly decreased below basal levels. In contrast, a nontoxic NMDA concentration gave up to longer (20 min) rise of pCREB, suggesting that neuroprotection could be associated to a relatively prolonged presence of pCREB in the neurons. In support of this tenet, rolipram, an inhibitor of phosphodiesterase IV that increases the levels of cAMP and pCREB, protected against NMDA-induced neuronal death. Similar results were obtained with dibutyrate-cAMP (a cAMP analogue with membrane permeability) that also abrogated NMDA excitotoxicity. Conversely, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline sulfonamide (H89), an inhibitor of protein kinase A (PKA), that prevents the formation of pCREB induced by nontoxic NMDA concentrations, reverted the neuroprotection achieved by preincubation of low micromolar NMDA concentrations. These results substantiate the notion that induction of pCREB via PKA plays an important role in NMDA-mediated neuroprotection.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Hipocampo/citologia , N-Metilaspartato/fisiologia , Neurônios/citologia , Receptores de N-Metil-D-Aspartato/agonistas , Animais , Células Cultivadas , Embrião não Mamífero/citologia , N-Metilaspartato/farmacologia , Fosforilação , Ratos , Transdução de Sinais
5.
Histochem Cell Biol ; 130(4): 655-67, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18663462

RESUMO

Transient receptor potential (TRP) channels of the TRPV, TRPA, and TRPM subfamilies play important roles in somatosensation including nociception. While particularly the Thermo TRPs have been extensively investigated in sensory neurons, the relevance of the subclass of "canonical" TRPC channels in primary afferents is yet elusive. In the present study, we investigated the presence and contribution to Ca(2+) transients of TRPC channels in dorsal root ganglion neurons. We found that six of the seven known TRPC subtypes were expressed in lumbar DRG, with TRPC1, C3, and C6 being the most abundant. Microfluorimetric calcium measurements showed Ca(2+) influx induced by oleylacylglycerol (OAG), an activator of the TRPC3/C6/C7 subgroup. Furthermore, OAG induced rises in [Ca(2+)](i) were inhibited by SKF96365, an inhibitor of receptor and store operated calcium channel. OAG induced calcium transients were also inhibited by blockers of diacylglycerol (DAG) lipase, lipoxygenase or cyclooxygenase and, intriguingly, by inhibitors of the capsaicin receptor TRPV1. Notably, SKF96365 did not affect capsaicin-induced calcium transients. Taken together, our findings suggest that TRPC are functionally expressed in subpopulations of DRG neurons. These channels, along with TRPV1, contribute to calcium homeostasis in rat sensory neurons.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Diglicerídeos/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Cálcio/antagonistas & inibidores , Diglicerídeos/antagonistas & inibidores , Feminino , Imidazóis/farmacologia , Lipase Lipoproteica/metabolismo , Lipoxigenase/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Cátion TRPC/genética , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA