RESUMO
BACKGROUND: Alveolar soft part sarcoma (ASPS) is a rare soft-tissue sarcoma with a poor prognosis and no established therapy. Recently, encouraging responses to immune checkpoint inhibitors have been reported. METHODS: We conducted an investigator-initiated, multicenter, single-group, phase 2 study of the anti-programmed death ligand 1 (PD-L1) agent atezolizumab in adult and pediatric patients with advanced ASPS. Atezolizumab was administered intravenously at a dose of 1200 mg (in patients ≥18 years of age) or 15 mg per kilogram of body weight with a 1200-mg cap (in patients <18 years of age) once every 21 days. Study end points included objective response, duration of response, and progression-free survival according to Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1, as well as pharmacodynamic biomarkers of multistep drug action. RESULTS: A total of 52 patients were evaluated. An objective response was observed in 19 of 52 patients (37%), with 1 complete response and 18 partial responses. The median time to response was 3.6 months (range, 2.1 to 19.1), the median duration of response was 24.7 months (range, 4.1 to 55.8), and the median progression-free survival was 20.8 months. Seven patients took a treatment break after 2 years of treatment, and their responses were maintained through the data-cutoff date. No treatment-related grade 4 or 5 adverse events were recorded. Responses were noted despite variable baseline expression of programmed death 1 and PD-L1. CONCLUSIONS: Atezolizumab was effective at inducing sustained responses in approximately one third of patients with advanced ASPS. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT03141684.).
Assuntos
Anticorpos Monoclonais Humanizados , Antígeno B7-H1 , Sarcoma Alveolar de Partes Moles , Adolescente , Adulto , Criança , Humanos , Recém-Nascido , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Peso Corporal , Sarcoma Alveolar de Partes Moles/tratamento farmacológico , Administração IntravenosaRESUMO
PURPOSE: Talazoparib is an inhibitor of the poly (ADP-ribose) polymerase (PARP) family of enzymes and is FDA-approved for patients with (suspected) deleterious germline BRCA1/2-mutated, HER2negative, locally advanced or metastatic breast cancer. Because knowledge of the pharmacodynamic (PD) effects of talazoparib in patients has been limited to studies of PARP enzymatic activity (PARylation) in peripheral blood mononuclear cells, we developed a study to assess tumoral PD response to talazoparib treatment (NCT01989546). METHODS: We administered single-agent talazoparib (1 mg/day) orally in 28-day cycles to adult patients with advanced solid tumors harboring (suspected) deleterious BRCA1 or BRCA2 mutations. The primary objective was to examine the PD effects of talazoparib; the secondary objective was to determine overall response rate (ORR). Tumor biopsies were mandatory at baseline and post-treatment on day 8 (optional at disease progression). Biopsies were analyzed for PARylation, DNA damage response (γH2AX), and epithelialâmesenchymal transition. RESULTS: Nine patients enrolled in this trial. Four of six patients (67%) evaluable for the primary PD endpoint exhibited a nuclear γH2AX response on day 8 of treatment, and five of six (83%) also exhibited strong suppression of PARylation. A transition towards a more mesenchymal phenotype was seen in 4 of 6 carcinoma patients, but this biological change did not affect γH2AX or PAR responses. The ORR was 55% with the five partial responses lasting a median of six cycles. CONCLUSION: Intra-tumoral DNA damage response and inhibition of PARP enzymatic activity were confirmed in patients with advanced solid tumors harboring BRCA1/2 mutations after 8 days of talazoparib treatment.
Assuntos
Antineoplásicos , Neoplasias da Mama , Adulto , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Leucócitos Mononucleares , Ftalazinas , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/genéticaRESUMO
Cancer metastasis is a major cause of cancer-related mortality. Strategies to reduce metastases are needed especially in lung cancer, the most common cause of cancer mortality. We previously reported increased ubiquitin-specific peptidase 18 (USP18) expression in lung and other cancers. Engineered reduction of USP18 expression repressed lung cancer growth and promoted apoptosis. This deubiquitinase (DUB) stabilized targeted proteins by removing the complex interferon-stimulated gene 15 (ISG15). This study explores if the loss of USP18 reduced lung cancer metastasis. USP18 knock-down in lung cancer cells was independently achieved using small hairpin RNAs (shRNAs) and small interfering RNAs (siRNAs). USP18 knock-down reduced lung cancer growth, wound-healing, migration, and invasion versus controls (P < .001) and markedly decreased murine lung cancer metastases (P < .001). Reverse Phase Protein Arrays (RPPAs) in shRNA knock-down lung cancer cells showed that 14-3-3ζ protein was regulated by loss of USP18. ISG15 complexed with 14-3-3ζ protein reducing its stability. Survival in lung adenocarcinomas (P < .0015) and other cancers was linked to elevated 14-3-3ζ expression as assessed by The Cancer Genome Atlas (TCGA). The findings were confirmed and extended using 14-3-3ζ immunohistochemical assays of human lung cancer arrays and syngeneic murine lung cancer metastasis models. A direct 14-3-3ζ role in controlling lung cancer metastasis came from engineered 14-3-3ζ knock-down in lung cancer cell lines and 14-3-3ζ rescue experiments that reversed migration and invasion inhibition. Findings presented here revealed that USP18 controlled metastasis by regulating 14-3-3ζ expression. These data provide a strong rationale for developing a USP18 inhibitor to combat metastases.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animais , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Proteases Específicas de Ubiquitina/metabolismoRESUMO
The significance of the phenotypic plasticity afforded by epithelial-mesenchymal transition (EMT) for cancer progression and drug resistance remains to be fully elucidated in the clinic. We evaluated epithelial-mesenchymal phenotypic characteristics across a range of tumor histologies using a validated, high-resolution digital microscopic immunofluorescence assay (IFA) that incorporates ß-catenin detection and cellular morphology to delineate carcinoma cells from stromal fibroblasts and that quantitates the individual and colocalized expression of the epithelial marker E-cadherin (E) and the mesenchymal marker vimentin (V) at subcellular resolution ("EMT-IFA"). We report the discovery of ß-catenin+ cancer cells that coexpress E-cadherin and vimentin in core-needle biopsies from patients with various advanced metastatic carcinomas, wherein these cells are transitioning between strongly epithelial and strongly mesenchymal-like phenotypes. Treatment of carcinoma models with anticancer drugs that differ in their mechanism of action (the tyrosine kinase inhibitor pazopanib in MKN45 gastric carcinoma xenografts and the combination of tubulin-targeting agent paclitaxel with the BCR-ABL inhibitor nilotinib in MDA-MB-468 breast cancer xenografts) caused changes in the tumor epithelial-mesenchymal character. Moreover, the appearance of partial EMT or mesenchymal-like carcinoma cells in MDA-MB-468 tumors treated with the paclitaxel-nilotinib combination resulted in upregulation of cancer stem cell (CSC) markers and susceptibility to FAK inhibitor. A metastatic prostate cancer patient treated with the PARP inhibitor talazoparib exhibited similar CSC marker upregulation. Therefore, the phenotypic plasticity conferred on carcinoma cells by EMT allows for rapid adaptation to cytotoxic or molecularly targeted therapy and could create a form of acquired drug resistance that is transient in nature. SIGNIFICANCE: Despite the role of EMT in metastasis and drug resistance, no standardized assessment of EMT phenotypic heterogeneity in human carcinomas exists; the EMT-IFA allows for clinical monitoring of tumor adaptation to therapy.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma/tratamento farmacológico , Plasticidade Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Animais , Antígenos CD/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Biópsia com Agulha de Grande Calibre , Caderinas/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Indazóis , Masculino , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Vimentina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/metabolismoRESUMO
BACKGROUND: TRC102 inhibits base excision repair by binding abasic sites and preventing AP endonuclease processing; it potentiates the activity of alkylating agents, including temozolomide, in murine models. In published xenograft studies, TRC102 enhanced the antitumor effect of temozolomide regardless of cell line genetic characteristics, e.g., O6-methylguanine DNA methyltransferase (MGMT), mismatch repair (MMR), or p53 status. MATERIALS AND METHODS: We conducted a phase 1 trial of TRC102 with temozolomide given orally on days 1-5 of 28-day cycles in adult patients with refractory solid tumors that had progressed on standard therapy. Tumor induction of nuclear biomarkers of DNA damage response (DDR) γH2AX, pNBs1, and Rad51 was assessed in the context of MGMT and MMR protein expression for expansion cohort patients. RESULTS: Fifty-two patients were enrolled (37 escalation, 15 expansion) with 51 evaluable for response. The recommended phase 2 dose was 125 mg TRC102, 150 mg/m2 temozolomide QDx5. Common adverse events (grade 3/4) included anemia (19%), lymphopenia (12%), and neutropenia (10%). Four patients achieved partial responses (1 non-small cell lung cancer, 2 granulosa cell ovarian cancer, and 1 colon cancer) and 13 patients had a best response of stable disease. Retrospective analysis of 15 expansion cohort patients did not demonstrate a correlation between low tumor MGMT expression and patient response, but treatment induced nuclear Rad51 responses in 6 of 12 patients. CONCLUSIONS: The combination of TRC 102 with temozolomide is active, with 4 of 51 patients experiencing a partial response and 13 of 51 experiencing stable disease, and the side effect profile is manageable.
RESUMO
PURPOSE:: Research biopsy specimens collected in clinical trials often present requirements beyond those of tumor biopsy specimens collected for diagnostic purposes. Research biopsies underpin hypothesis-driven drug development, pharmacodynamic assessment of molecularly targeted anticancer agents, and, increasingly, genomic assessment for precision medicine; insufficient biopsy specimen quality or quantity therefore compromises the scientific value of a study and the resources devoted to it, as well as each patient's contribution to and potential benefit from a clinical trial. METHODS:: To improve research biopsy specimen quality, we consulted with other translational oncology teams and reviewed current best practices. RESULTS:: Among the recommendations were improving communication between oncologists and interventional radiologists, providing feedback on specimen sufficiency, increasing academic recognition and financial support for the time investment required by radiologists to collect and preserve research biopsy specimens, and improving real-time assessment of tissue quality. CONCLUSION:: Implementing these recommendations at the National Cancer Institute's Developmental Therapeutics Clinic has demonstrably improved the quality of biopsy specimens collected; more widespread dissemination of these recommendations beyond large clinical cancer centers is possible and will be of value to the community in improving clinical research and, ultimately, patient care.
RESUMO
Purpose: We aimed to establish the MTD of the poly (ADP-ribose) (PAR) polymerase inhibitor, veliparib, in combination with carboplatin in germline BRCA1- and BRCA2- (BRCA)-associated metastatic breast cancer (MBC), to assess the efficacy of single-agent veliparib, and of the combination treatment after progression, and to correlate PAR levels with clinical outcome.Experimental Design: Phase I patients received carboplatin (AUC of 5-6, every 21 days), with escalating doses (50-20 mg) of oral twice-daily (BID) veliparib. In a companion phase II trial, patients received single-agent veliparib (400 mg BID), and upon progression, received the combination at MTD. Peripheral blood mononuclear cell PAR and serum veliparib levels were assessed and correlated with outcome.Results: Twenty-seven phase I trial patients were evaluable. Dose-limiting toxicities were nausea, dehydration, and thrombocytopenia [MTD: veliparib 150 mg po BID and carboplatin (AUC of 5)]. Response rate (RR) was 56%; 3 patients remain in complete response (CR) beyond 3 years. Progression-free survival (PFS) and overall survival (OS) were 8.7 and 18.8 months. The PFS and OS were 5.2 and 14.5 months in the 44 patients in the phase II trial, with a 14% RR in BRCA1 (n = 22) and 36% in BRCA2 (n = 22). One of 30 patients responded to the combination therapy after progression on veliparib. Higher baseline PAR was associated with clinical benefit.Conclusions: Safety and efficacy are encouraging with veliparib alone and in combination with carboplatin in BRCA-associated MBC. Lasting CRs were observed when the combination was administered first in the phase I trial. Further investigation of PAR level association with clinical outcomes is warranted. Clin Cancer Res; 23(15); 4066-76. ©2017 AACR.
Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Benzimidazóis/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Carboplatina/administração & dosagem , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Benzimidazóis/efeitos adversos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , California , Carboplatina/efeitos adversos , Terapia Combinada , Intervalo Livre de Doença , Feminino , Mutação em Linhagem Germinativa , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversosRESUMO
Clinical pharmacodynamic assays need to meet higher criteria for sensitivity, precision, robustness, and reproducibility than those expected for research-grade assays because of the long duration of clinical trials and the potentially unpredictable number of laboratories running the assays. This report describes the process of making an immunoassay based on commercially available reagents "clinically ready". The assay was developed to quantify poly(ADP-ribose) (PAR) levels as a marker of PAR polymerase inhibitor activity for a proof-of-concept phase 0 clinical trial at the National Cancer Institute (NCI) and subsequent clinical trials. In this publication, we retrospectively examine the measures taken to validate the published PAR immunoassay and outline key lessons learned during the development and implementation of these procedures at both internal and external clinical trial sites; these measures included optimizing PAR measurements in tumor biopsies and peripheral blood mononuclear cells (PBMCs), reagent qualification, analytical validation and assay quality control, instrument qualification and method quality control, and support for external laboratories.
Assuntos
Imunoensaio , Neoplasias/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacocinética , Poli(ADP-Ribose) Polimerases/análise , Animais , Biópsia/métodos , Humanos , Imunoensaio/instrumentação , Imunoensaio/métodos , Imunoensaio/normas , Indicadores e Reagentes , Laboratórios , Luminescência , Camundongos , National Cancer Institute (U.S.) , Neoplasias/tratamento farmacológico , Controle de Qualidade , Reprodutibilidade dos Testes , Estados Unidos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Robust pharmacodynamic assay results are valuable for informing go/no-go decisions about continued development of new anti-cancer agents and for identifying combinations of targeted agents, but often pharmacodynamic results are too incomplete or variable to fulfill this role. Our experience suggests that variable reagent and specimen quality are two major contributors to this problem. Minimizing all potential sources of variability in procedures for specimen collection, processing, and assay measurements is essential for meaningful comparison of pharmacodynamic biomarkers across sample time points. This is especially true in the evaluation of pre- and post-dose tumor biopsies, which suffer from high levels of tumor insufficiency due to variations in biopsy collection techniques and significant specimen heterogeneity within and across patients. Developing methods to assess heterogeneous biopsies is necessary in order to evaluate a majority of tumor biopsies collected for pharmacodynamic biomarker studies. Improved collection devices and standardization of methods are being sought in order to improve the tumor content and quality of tumor biopsies. In terms of reagent variability, we have found that stringent initial reagent qualification and quality control of R&D-grade reagents is critical to minimize lot-to-lot variability and prevent assay failures, especially for clinical pharmacodynamic questions, which often demand assay performance that meets or exceeds clinical diagnostic assay standards. Rigorous reagent specifications and use of appropriate assay quality control methodologies help to ensure consistency between assay runs, laboratories and trials to provide much needed pharmacodynamic insights into the activity of investigational agents.