Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401262

RESUMO

Hypolimnas misippus is a Batesian mimic of the toxic African Queen butterfly (Danaus chrysippus). Female H. misippus butterflies use two major wing patterning loci (M and A) to imitate three color morphs of D. chrysippus found in different regions of Africa. In this study, we examine the evolution of the M locus and identify it as an example of adaptive atavism. This phenomenon involves a morphological reversion to an ancestral character that results in an adaptive phenotype. We show that H. misippus has re-evolved an ancestral wing pattern present in other Hypolimnas species, repurposing it for Batesian mimicry of a D. chrysippus morph. Using haplotagging, a linked-read sequencing technology, and our new analytical tool, Wrath, we discover two large transposable element insertions located at the M locus and establish that these insertions are present in the dominant allele responsible for producing mimetic phenotype. By conducting a comparative analysis involving additional Hypolimnas species, we demonstrate that the dominant allele is derived. This suggests that, in the derived allele, the transposable elements disrupt a cis-regulatory element, leading to the reversion to an ancestral phenotype that is then utilized for Batesian mimicry of a distinct model, a different morph of D. chrysippus. Our findings present a compelling instance of convergent evolution and adaptive atavism, in which the same pattern element has independently evolved multiple times in Hypolimnas butterflies, repeatedly playing a role in Batesian mimicry of diverse model species.


Assuntos
Mimetismo Biológico , Borboletas , Animais , Borboletas/genética , Elementos de DNA Transponíveis , Mimetismo Biológico/genética , Fenótipo , África , Asas de Animais/anatomia & histologia
2.
PLoS Biol ; 18(2): e3000610, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32108180

RESUMO

Neo-sex chromosomes are found in many taxa, but the forces driving their emergence and spread are poorly understood. The female-specific neo-W chromosome of the African monarch (or queen) butterfly Danaus chrysippus presents an intriguing case study because it is restricted to a single 'contact zone' population, involves a putative colour patterning supergene, and co-occurs with infection by the male-killing endosymbiont Spiroplasma. We investigated the origin and evolution of this system using whole genome sequencing. We first identify the 'BC supergene', a broad region of suppressed recombination across nearly half a chromosome, which links two colour patterning loci. Association analysis suggests that the genes yellow and arrow in this region control the forewing colour pattern differences between D. chrysippus subspecies. We then show that the same chromosome has recently formed a neo-W that has spread through the contact zone within approximately 2,200 years. We also assembled the genome of the male-killing Spiroplasma, and find that it shows perfect genealogical congruence with the neo-W, suggesting that the neo-W has hitchhiked to high frequency as the male-killer has spread through the population. The complete absence of female crossing-over in the Lepidoptera causes whole-chromosome hitchhiking of a single neo-W haplotype, carrying a single allele of the BC supergene and dragging multiple non-synonymous mutations to high frequency. This has created a population of infected females that all carry the same recessive colour patterning allele, making the phenotypes of each successive generation highly dependent on uninfected male immigrants. Our findings show how hitchhiking can occur between the physically unlinked genomes of host and endosymbiont, with dramatic consequences.


Assuntos
Borboletas/genética , Cromossomos de Insetos/genética , Cromossomos Sexuais/genética , Animais , Borboletas/microbiologia , Evolução Molecular , Feminino , Ligação Genética , Genoma/genética , Haplótipos , Masculino , Fenótipo , Spiroplasma/genética
3.
Nature ; 534(7605): 106-10, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251285

RESUMO

The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of evolutionary diversification by natural selection. Lepidopteran wing colour patterns are a key innovation, consisting of arrays of coloured scales. We still lack a general understanding of how these patterns are controlled and whether this control shows any commonality across the 160,000 moth and 17,000 butterfly species. Here, we use fine-scale mapping with population genomics and gene expression analyses to identify a gene, cortex, that regulates pattern switches in multiple species across the mimetic radiation in Heliconius butterflies. cortex belongs to a fast-evolving subfamily of the otherwise highly conserved fizzy family of cell-cycle regulators, suggesting that it probably regulates pigmentation patterning by regulating scale cell development. In parallel with findings in the peppered moth (Biston betularia), our results suggest that this mechanism is common within Lepidoptera and that cortex has become a major target for natural selection acting on colour and pattern variation in this group of insects.


Assuntos
Mimetismo Biológico/genética , Borboletas/genética , Genes de Insetos/genética , Pigmentação/genética , Asas de Animais/fisiologia , Animais , Mimetismo Biológico/fisiologia , Borboletas/citologia , Borboletas/fisiologia , Cor , Evolução Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Fenótipo , Pigmentação/fisiologia , Seleção Genética/genética
4.
Pestic Biochem Physiol ; 169: 104674, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32828379

RESUMO

There is an on-going need to develop new insecticides that are not compromised by resistance and that have improved environmental profiles. However, the cost of developing novel compounds has increased significantly over the last two decades. This is in part due to increased regulatory requirements, including the need to screen both pest and pollinator insect species to ensure that pre-existing resistance will not hamper the efficacy of a new insecticide via cross-resistance, or adversely affect non-target insect species. To add to this problem the collection and maintenance of toxicologically relevant pest and pollinator species and strains is costly and often difficult. Here we present Fly-Tox, a panel of publicly available transgenic Drosophila melanogaster lines each containing one or more pest or pollinator P450 genes that have been previously shown to metabolise insecticides. We describe the range of ways these tools can be used, including in predictive screens to avoid pre-existing cross-resistance, to identify potential resistance-breaking inhibitors, in the initial assessment of potential insecticide toxicity to bee pollinators, and identifying harmful pesticide-pesticide interactions.


Assuntos
Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Animais , Animais Geneticamente Modificados , Abelhas , Sistema Enzimático do Citocromo P-450 , Drosophila melanogaster/efeitos dos fármacos
5.
Glob Chang Biol ; 24(4): 1793-1803, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29281766

RESUMO

Trophic interactions are important determinants of the structure and functioning of ecosystems. Because the metabolism and consumption rates of ectotherms increase sharply with temperature, there are major concerns that global warming will increase the strength of trophic interactions, destabilizing food webs, and altering ecosystem structure and function. We used geothermally warmed streams that span an 11°C temperature gradient to investigate the interplay between temperature-driven selection on traits related to metabolism and resource acquisition, and the interaction strength between the keystone gastropod grazer, Radix balthica, and a common algal resource. Populations from a warm stream (~28°C) had higher maximal metabolic rates and optimal temperatures than their counterparts from a cold stream (~17°C). We found that metabolic rates of the population originating from the warmer stream were higher across all measurement temperatures. A reciprocal transplant experiment demonstrated that the interaction strengths between the grazer and its algal resource were highest for both populations when transplanted into the warm stream. In line with the thermal dependence of respiration, interaction strengths involving grazers from the warm stream were always higher than those with grazers from the cold stream. These results imply that increases in metabolism and resource consumption mediated by the direct, thermodynamic effects of higher temperatures on physiological rates are not mitigated by metabolic compensation in the long term, and suggest that warming could increase the strength of algal-grazer interactions with likely knock-on effects for the biodiversity and productivity of aquatic ecosystems.


Assuntos
Cadeia Alimentar , Herbivoria/fisiologia , Rios , Caramujos/fisiologia , Animais , Biodiversidade , Fontes Termais , Temperatura Alta
6.
Ecol Lett ; 20(10): 1250-1260, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28853241

RESUMO

Gross primary production (GPP) is the largest flux in the carbon cycle, yet its response to global warming is highly uncertain. The temperature dependence of GPP is directly linked to photosynthetic physiology, but the response of GPP to warming over longer timescales could also be shaped by ecological and evolutionary processes that drive variation in community structure and functional trait distributions. Here, we show that selection on photosynthetic traits within and across taxa dampens the effects of temperature on GPP across a catchment of geothermally heated streams. Autotrophs from cold streams had higher photosynthetic rates and after accounting for differences in biomass among sites, biomass-specific GPP was independent of temperature in spite of a 20 °C thermal gradient. Our results suggest that temperature compensation of photosynthetic rates constrains the long-term temperature dependence of GPP, and highlights the importance of considering physiological, ecological and evolutionary mechanisms when predicting how ecosystem-level processes respond to warming.


Assuntos
Ciclo do Carbono , Temperatura , Biomassa , Ecossistema , Fotossíntese
7.
Cytogenet Genome Res ; 153(1): 46-53, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29130975

RESUMO

The number of sequenced lepidopteran genomes is increasing rapidly. However, the corresponding assemblies rarely represent whole chromosomes and generally also lack the highly repetitive W sex chromosome. Knowledge of the karyotypes can facilitate genome assembly and further our understanding of sex chromosome evolution in Lepidoptera. Here, we describe the karyotypes of the Glanville fritillary Melitaea cinxia (n = 31), the monarch Danaus plexippus (n = 30), and the African queen D. chrysippus (2n = 60 or 59, depending on the source population). We show by FISH that the telomeres are of the (TTAGG)n type, as found in most insects. M. cinxia and D. plexippus have "conventional" W chromosomes which are heterochromatic in meiotic and somatic cells. In D. chrysippus, the W is inconspicuous. Neither telomeres nor W chromosomes are represented in the published genomes of M. cinxia and D. plexippus. Representation analysis in sequenced female and male D. chrysippus genomes detected an evolutionarily old autosome-Z chromosome fusion in Danaus. Conserved synteny of whole chromosomes, so called "macro synteny", in Lepidoptera permitted us to identify the chromosomes involved in this fusion. An additional and more recent sex chromosome fusion was found in D. chrysippus by karyotype analysis and classical genetics. In a hybrid population between 2 subspecies, D. c. chrysippus and D. c. dorippus, the W chromosome was fused to an autosome that carries a wing colour locus. Thus, cytogenetics and the present state of genome data complement one another to reveal the evolutionary history of the species.


Assuntos
Borboletas/genética , Genoma/genética , Cariótipo , Sintenia/genética , Telômero/genética , Animais , Mapeamento Cromossômico , Cromossomos/classificação , Cromossomos/genética , Feminino , Hibridização in Situ Fluorescente , Masculino
8.
Nature ; 477(7363): 203-6, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21841803

RESUMO

Supergenes are tight clusters of loci that facilitate the co-segregation of adaptive variation, providing integrated control of complex adaptive phenotypes. Polymorphic supergenes, in which specific combinations of traits are maintained within a single population, were first described for 'pin' and 'thrum' floral types in Primula and Fagopyrum, but classic examples are also found in insect mimicry and snail morphology. Understanding the evolutionary mechanisms that generate these co-adapted gene sets, as well as the mode of limiting the production of unfit recombinant forms, remains a substantial challenge. Here we show that individual wing-pattern morphs in the polymorphic mimetic butterfly Heliconius numata are associated with different genomic rearrangements at the supergene locus P. These rearrangements tighten the genetic linkage between at least two colour-pattern loci that are known to recombine in closely related species, with complete suppression of recombination being observed in experimental crosses across a 400-kilobase interval containing at least 18 genes. In natural populations, notable patterns of linkage disequilibrium (LD) are observed across the entire P region. The resulting divergent haplotype clades and inversion breakpoints are found in complete association with wing-pattern morphs. Our results indicate that allelic combinations at known wing-patterning loci have become locked together in a polymorphic rearrangement at the P locus, forming a supergene that acts as a simple switch between complex adaptive phenotypes found in sympatry. These findings highlight how genomic rearrangements can have a central role in the coexistence of adaptive phenotypes involving several genes acting in concert, by locally limiting recombination and gene flow.


Assuntos
Borboletas/genética , Cromossomos de Insetos/genética , Rearranjo Gênico/genética , Genes de Insetos/genética , Mimetismo Molecular/genética , Polimorfismo Genético/genética , Alelos , Animais , Borboletas/anatomia & histologia , Borboletas/fisiologia , Passeio de Cromossomo , Ligação Genética/genética , Haplótipos/genética , Mimetismo Molecular/fisiologia , Dados de Sequência Molecular , Família Multigênica/genética , Fenótipo , Pigmentação/genética , Pigmentação/fisiologia , Asas de Animais/anatomia & histologia , Asas de Animais/metabolismo , Asas de Animais/fisiologia
9.
Proc Biol Sci ; 283(1833)2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27358370

RESUMO

The ecological impact of night-time lighting is of concern because of its well-demonstrated effects on animal behaviour. However, the potential of light pollution to change plant phenology and its corresponding knock-on effects on associated herbivores are less clear. Here, we test if artificial lighting can advance the timing of budburst in trees. We took a UK-wide 13 year dataset of spatially referenced budburst data from four deciduous tree species and matched it with both satellite imagery of night-time lighting and average spring temperature. We find that budburst occurs up to 7.5 days earlier in brighter areas, with the relationship being more pronounced for later-budding species. Excluding large urban areas from the analysis showed an even more pronounced advance of budburst, confirming that the urban 'heat-island' effect is not the sole cause of earlier urban budburst. Similarly, the advance in budburst across all sites is too large to be explained by increases in temperature alone. This dramatic advance of budburst illustrates the need for further experimental investigation into the impact of artificial night-time lighting on plant phenology and subsequent species interactions. As light pollution is a growing global phenomenon, the findings of this study are likely to be applicable to a wide range of species interactions across the world.


Assuntos
Iluminação , Estações do Ano , Árvores/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Temperatura , Reino Unido
10.
Proc Biol Sci ; 283(1835)2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27440667

RESUMO

Sexually antagonistic selection can drive both the evolution of sex chromosomes and speciation itself. The tropical butterfly the African Queen, Danaus chrysippus, shows two such sexually antagonistic phenotypes, the first being sex-linked colour pattern, the second, susceptibility to a male-killing, maternally inherited mollicute, Spiroplasma ixodeti, which causes approximately 100% mortality in male eggs and first instar larvae. Importantly, this mortality is not affected by the infection status of the male parent and the horizontal transmission of Spiroplasma is unknown. In East Africa, male-killing of the Queen is prevalent in a narrow hybrid zone centred on Nairobi. This hybrid zone separates otherwise allopatric subspecies with different colour patterns. Here we show that a neo-W chromosome, a fusion between the W (female) chromosome and an autosome that controls both colour pattern and male-killing, links the two phenotypes thereby driving speciation across the hybrid zone. Studies of the population genetics of the neo-W around Nairobi show that the interaction between colour pattern and male-killer susceptibility restricts gene flow between two subspecies of D. chrysippus Our results demonstrate how a complex interplay between sex, colour pattern, male-killing, and a neo-W chromosome, has set up a genetic 'sink' that keeps the two subspecies apart. The association between the neo-W and male-killing thus provides a 'smoking gun' for an ongoing speciation process.


Assuntos
Borboletas/genética , Especiação Genética , Pigmentação/genética , Cromossomos Sexuais/genética , Animais , Cor , Feminino , Fluxo Gênico , Genética Populacional , Quênia , Masculino , Fenótipo
11.
J Neurogenet ; 30(3-4): 163-177, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27802784

RESUMO

Ion channels remain the primary target of most of the small molecule insecticides. This review examines how the subunit composition of heterologously expressed receptors determines their insecticide-specific pharmacology and how the pharmacology of expressed receptors differs from those found in the insect nervous system. We find that the insecticide-specific pharmacology of some receptors, like that containing subunits of the Rdl encoded GABA receptor, can be reconstituted with very few of the naturally occurring subunits expressed. In contrast, workers have struggled even to express functional insect nicotinic acetylcholine receptors (nAChRs), and work has therefore often relied upon the expression of vertebrate receptor subunits in their place. We also examine the extent to which insecticide-resistance-associated mutations, such as those in the para encoded voltage-gated sodium channel, can reveal details of insecticide-binding sites and mode of action. In particular, we examine whether mutations are present in the insecticide-binding site and/or at sites that allosterically affect the drug preferred conformation of the receptor. We also discuss the ryanodine receptor as a target for the recently developed diamides. Finally, we examine the lethality of the genes encoding these receptor subunits and discuss how this might determine the degree of conservation of the resistance-associated mutations found.


Assuntos
Inseticidas/farmacologia , Canais Iônicos/efeitos dos fármacos , Animais , Canais Iônicos/genética
13.
Proc Biol Sci ; 281(1787)2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24920480

RESUMO

The African Mocker Swallowtail, Papilio dardanus, is a textbook example in evolutionary genetics. Classical breeding experiments have shown that wing pattern variation in this polymorphic Batesian mimic is determined by the polyallelic H locus that controls a set of distinct mimetic phenotypes. Using bacterial artificial chromosome (BAC) sequencing, recombination analyses and comparative genomics, we show that H co-segregates with an interval of less than 500 kb that is collinear with two other Lepidoptera genomes and contains 24 genes, including the transcription factor genes engrailed (en) and invected (inv). H is located in a region of conserved gene order, which argues against any role for genomic translocations in the evolution of a hypothesized multi-gene mimicry locus. Natural populations of P. dardanus show significant associations of specific morphs with single nucleotide polymorphisms (SNPs), centred on en. In addition, SNP variation in the H region reveals evidence of non-neutral molecular evolution in the en gene alone. We find evidence for a duplication potentially driving physical constraints on recombination in the lamborni morph. Absence of perfect linkage disequilibrium between different genes in the other morphs suggests that H is limited to nucleotide positions in the regulatory and coding regions of en. Our results therefore support the hypothesis that a single gene underlies wing pattern variation in P. dardanus.


Assuntos
Borboletas/genética , Genoma de Inseto , Proteínas de Insetos/genética , Animais , Borboletas/metabolismo , Evolução Molecular , Proteínas de Insetos/metabolismo , Desequilíbrio de Ligação , Dados de Sequência Molecular , Fenótipo , Análise de Sequência de DNA , Asas de Animais/metabolismo
14.
Chembiochem ; 15(3): 369-72, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24488732

RESUMO

The biosynthesis gene cluster for the production of xenocyloins was identified in the entomopathogenic bacterium Xenorhabdus bovienii SS-2004, and their biosynthesis was elucidated by heterologous expression and in vitro characterization of the enzymes. XclA is an S-selective ThDP-dependent acyloin-like condensation enzyme, and XclB and XclC are examples of the still-rare acylating ketosynthases that catalyze the acylation of the XclA-derived initial xenocyloins with acetyl-, propionyl-, or malonyl-CoA, thereby resulting in the formation of further xenocyloin derivatives. All xenocyloins were produced mainly by the more virulent primary variant of X. bovienii and showed activity against insect hemocytes thus contributing to the overall virulence of X. bovienii against insects.


Assuntos
Indóis/metabolismo , Inseticidas/metabolismo , Xenorhabdus/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Acilação , Animais , Sítios de Ligação , Indóis/química , Indóis/toxicidade , Inseticidas/química , Inseticidas/toxicidade , Lepidópteros/efeitos dos fármacos , Simulação de Acoplamento Molecular , Família Multigênica , Filogenia , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Xenorhabdus/enzimologia , Xenorhabdus/genética
15.
PLoS Pathog ; 8(5): e1002692, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615559

RESUMO

The Toxin Complex (TC) is a large multi-subunit toxin first characterized in the insect pathogens Photorhabdus and Xenorhabdus, but now seen in a range of pathogens, including those of humans. These complexes comprise three protein subunits, A, B and C which in the Xenorhabdus toxin are found in a 4:1:1 stoichiometry. Some TCs have been demonstrated to exhibit oral toxicity to insects and have the potential to be developed as a pest control technology. The lack of recognisable signal sequences in the three large component proteins hinders an understanding of their mode of secretion. Nevertheless, we have shown the Photorhabdus luminescens (Pl) Tcd complex has been shown to associate with the bacteria's surface, although some strains can also release it into the surrounding milieu. The large number of tc gene homologues in Pl make study of the export process difficult and as such we have developed and validated a heterologous Escherichia coli expression model to study the release of these important toxins. In addition to this model, we have used comparative genomics between a strain that releases high levels of Tcd into the supernatant and one that retains the toxin on its surface, to identify a protein responsible for enhancing secretion and release of these toxins. This protein is a putative lipase (Pdl1) which is regulated by a small tightly linked antagonist protein (Orf53). The identification of homologues of these in other bacteria, linked to other virulence factor operons, such as type VI secretion systems, suggests that these genes represent a general and widespread mechanism for enhancing toxin release in gram negative pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Toxinas Bacterianas/metabolismo , Lipase/metabolismo , Manduca/microbiologia , Photorhabdus/patogenicidade , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Larva/microbiologia , Proteínas de Membrana/metabolismo , Photorhabdus/metabolismo , Xenorhabdus/metabolismo , Xenorhabdus/patogenicidade
16.
Ecol Evol ; 14(2): e11024, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38414566

RESUMO

Scoring the penetrance of heterozygotes in complex phenotypes, like colour pattern, is difficult and complicates the analysis of systems in which dominance is incomplete or evolving. The African Monarch (Danaus chrysippus) represents an example where colour pattern heterozygotes, formed in the contact zone between the different subspecies, show such intermediate dominance. Colour pattern in this aposematic butterfly is controlled by three loci A, B and C. The B and C loci are closely linked in a B/C supergene and significant interaction of B and C phenotypes is therefore expected via linkage alone. The A locus, however, is not linked to B/C and is found on a different chromosome. To study interactions between these loci we generated colour pattern heterozygotes by crossing males and females bearing different A and B/C genotypes, collected from different parts of Africa. We derived a novel scoring system for the expressivity of the heterozygotes and, as predicted, we found significant interactions between the genotypes of the closely linked B and C loci. Surprisingly, however, we also found highly significant interactions between C and the unlinked A locus, modifications that generally increased the resemblance of heterozygotes to homozygous ancestors. In contrast, we found no difference in the penetrance of any of the corresponding heterozygotes from crosses conducted either in allopatry or sympatry, in reciprocal crosses of males and females, or in the presence or absence of endosymbiont mediated male-killing or its associated neoW mediated sex-linkage of colour pattern. Together, this data supports the idea that the different colour morphs of the African Monarch meet transiently in the East African contact zone and that genetic modifiers act to mask inappropriate expression of colour patterns in the incorrect environments.

17.
Ecol Evol ; 14(1): e10842, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235407

RESUMO

Since the classic work of E.B. Ford, explanations for eyespot variation in the Meadow Brown butterfly have focused on the role of genetic polymorphism. The potential role of thermal plasticity in this classic example of natural selection has therefore been overlooked. Here, we use large daily field collections of butterflies from three sites, over multiple years, to examine whether field temperature is correlated with eyespot variation, using the same presence/absence scoring as Ford. We show that higher developmental temperature in the field leads to the disappearance of the spots visible while the butterfly is at rest, explaining the historical observation that hindwing spotting declines across the season. Strikingly, females developing at 11°C have a median of six spots and those developing at 15°C only have three. In contrast, the large forewing eyespot is always present and scales with forewing length. Furthermore, in contrast to the smaller spots, the size of the large forewing spot is best explained by calendar date (days since 1st March) rather than the temperature at pupation. As this large forewing spot is involved in startling predators and/or sexual selection, its constant presence is therefore likely required for defence, whereas the disappearance of the smaller spots over the season may help with female crypsis. We model annual total spot variation with phenological data from the UK and derive predictions as to how spot patterns will continue to change, predicting that female spotting will decrease year on year as our climate warms.

18.
Chembiochem ; 14(15): 1991-7, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24038745

RESUMO

Six novel linear peptides, named "rhabdopeptides", have been identified in the entomopathogenic bacterium Xenorhabdus nematophila after the discovery of the corresponding rdp gene cluster by using a promoter trap strategy for the detection of insect-inducible genes. The structures of these rhabdopeptides were deduced from labeling experiments combined with detailed MS analysis. Detailed analysis of an rdp mutant revealed that these compounds participate in virulence towards insects and are produced upon bacterial infection of a suitable insect host. Furthermore, two additional rhabdopeptide derivatives produced by Xenorhabdus cabanillasii were isolated, these showed activity against insect hemocytes thereby confirming the virulence of this novel class of compounds.


Assuntos
Antiprotozoários/metabolismo , Manduca/microbiologia , Peptídeos/metabolismo , Fatores de Virulência/metabolismo , Xenorhabdus/metabolismo , Animais , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Antiprotozoários/farmacologia , Peptídeo Sintases/metabolismo , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Especificidade da Espécie , Fatores de Virulência/química , Xenorhabdus/fisiologia
19.
Biol Lett ; 9(4): 20130376, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23720524

RESUMO

With moth declines reported across Europe, and parallel changes in the amount and spectra of street lighting, it is important to understand exactly how artificial lights affect moth populations. We therefore compared the relative attractiveness of shorter wavelength (SW) and longer wavelength (LW) lighting to macromoths. SW light attracted significantly more individuals and species of moth, either when used alone or in competition with LW lighting. We also found striking differences in the relative attractiveness of different wavelengths to different moth groups. SW lighting attracted significantly more Noctuidae than LW, whereas both wavelengths were equally attractive to Geometridae. Understanding the extent to which different groups of moth are attracted to different wavelengths of light will be useful in determining the impact of artificial light on moth populations.


Assuntos
Mariposas/fisiologia , Animais , Conservação dos Recursos Naturais , Inglaterra , Luz , Estações do Ano , Especificidade da Espécie , Percepção Visual
20.
J Immunol ; 186(8): 4828-34, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21398604

RESUMO

Numerous vertebrate and invertebrate genes encode serine proteinase homologues (SPHs) similar to members of the serine proteinase family, but lacking one or more residues of the catalytic triad. These SPH proteins are thought to play a role in immunity, but their precise functions are poorly understood. In this study, we show that SPH-3 (an insect non-clip domain-containing SPH) is of central importance in the immune response of a model lepidopteran, Manduca sexta. We examine M. sexta infection with a virulent, insect-specific, Gram-negative bacterium Photorhabdus luminescens. RNA interference suppression of bacteria-induced SPH-3 synthesis severely compromises the insect's ability to defend itself against infection by preventing the transcription of multiple antimicrobial effector genes, but, surprisingly, not the transcription of immune recognition genes. Upregulation of the gene encoding prophenoloxidase and the activity of the phenoloxidase enzyme are among the antimicrobial responses that are severely attenuated on SPH-3 knockdown. These findings suggest the existence of two largely independent signaling pathways controlling immune recognition by the fat body, one governing effector gene transcription, and the other regulating genes encoding pattern recognition proteins.


Assuntos
Proteínas de Insetos/imunologia , Manduca/imunologia , Photorhabdus/imunologia , Serina Proteases/imunologia , Animais , Western Blotting , Catecol Oxidase/genética , Catecol Oxidase/imunologia , Catecol Oxidase/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/imunologia , Precursores Enzimáticos/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Manduca/enzimologia , Manduca/microbiologia , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/imunologia , Monofenol Mono-Oxigenase/metabolismo , Photorhabdus/fisiologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina Proteases/genética , Serina Proteases/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA