Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 51(4): 1023-1034, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37971501

RESUMO

PURPOSE: Metabolic network analysis of FDG-PET utilizes an index of inter-regional correlation of resting state glucose metabolism and has been proven to provide complementary information regarding the disease process in parkinsonian syndromes. The goals of this study were (i) to evaluate pattern similarities of glucose metabolism and network connectivity in dementia with Lewy bodies (DLB) subjects with subthreshold dopaminergic loss compared to advanced disease stages and to (ii) investigate metabolic network alterations of FDG-PET for discrimination of patients with early DLB from other neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, multiple system atrophy) at individual patient level via principal component analysis (PCA). METHODS: FDG-PETs of subjects with probable or possible DLB (n = 22) without significant dopamine deficiency (z-score < 2 in putamen binding loss on DaT-SPECT compared to healthy controls (HC)) were scaled by global-mean, prior to volume-of-interest-based analyses of relative glucose metabolism. Single region metabolic changes and network connectivity changes were compared against HC (n = 23) and against DLB subjects with significant dopamine deficiency (n = 86). PCA was applied to test discrimination of patients with DLB from disease controls (n = 101) at individual patient level. RESULTS: Similar patterns of hypo- (parietal- and occipital cortex) and hypermetabolism (basal ganglia, limbic system, motor cortices) were observed in DLB patients with and without significant dopamine deficiency when compared to HC. Metabolic connectivity alterations correlated between DLB patients with and without significant dopamine deficiency (R2 = 0.597, p < 0.01). A PCA trained by DLB patients with dopamine deficiency and HC discriminated DLB patients without significant dopaminergic loss from other neurodegenerative parkinsonian disorders at individual patient level (area-under-the-curve (AUC): 0.912). CONCLUSION: Disease-specific patterns of altered glucose metabolism and altered metabolic networks are present in DLB subjects without significant dopaminergic loss. Metabolic network alterations in FDG-PET can act as a supporting biomarker in the subgroup of DLB patients without significant dopaminergic loss at symptoms onset.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Dopamina/metabolismo , Fluordesoxiglucose F18 , Doença de Alzheimer/metabolismo , Tomografia por Emissão de Pósitrons , Glucose/metabolismo , Redes e Vias Metabólicas
2.
Opt Express ; 31(24): 40113-40123, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041319

RESUMO

Orbital angular momentum can be used to implement high capacity data transmission systems that can be applied for classical and quantum communications. Here we experimentally study the generation and transmission properties of the so-called perfect vortex beams and the Laguerre-Gaussian beams in ring-core optical fibers. Our results show that when using a single preparation stage, the perfect vortex beams present less ring-radius variation that allows coupling of higher optical power into a ring core fiber. These results lead to lower power requirements to establish fiber-based communications links using orbital angular momentum and set the stage for future implementations of high-dimensional quantum communication over space division multiplexing fibers.

3.
J Nucl Cardiol ; 30(1): 116-126, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35610536

RESUMO

PURPOSE: Evaluate the prediction of quantitative coronary angiography (QCA) values from MPI, by means of deep learning. METHODS: 546 patients (67% men) undergoing stress 99mTc-tetrofosmin MPI in a CZT camera in the upright and supine position were included (1092 MPIs). Patients were divided into two groups: ICA group included 271 patients who performed an ICA within 6 months of MPI and a control group with 275 patients with low pre-test probability for CAD and a normal MPI. QCA analyses were performed using radiologic software and verified by an expert reader. Left ventricular myocardium was segmented using clinical nuclear cardiology software and verified by an expert reader. A deep learning model was trained using a double cross-validation scheme such that all data could be used as test data as well. RESULTS: Area under the receiver-operating characteristic curve for the prediction of QCA, with > 50% narrowing of the artery, by deep learning for the external test cohort: per patient 85% [95% confidence interval (CI) 84%-87%] and per vessel; LAD 74% (CI 72%-76%), RCA 85% (CI 83%-86%), LCx 81% (CI 78%-84%), and average 80% (CI 77%-83%). CONCLUSION: Deep learning can predict the presence of different QCA percentages of coronary artery stenosis from MPIs.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Aprendizado Profundo , Imagem de Perfusão do Miocárdio , Masculino , Humanos , Feminino , Angiografia Coronária/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Imagem de Perfusão do Miocárdio/métodos , Perfusão , Cádmio , Telúrio
4.
Sensors (Basel) ; 23(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679730

RESUMO

Images produced by CMOS sensors may contain defective pixels due to noise, manufacturing errors, or device malfunction, which must be detected and corrected at early processing stages in order to produce images that are useful to human users and image-processing or machine-vision algorithms. This paper proposes a defective pixel detection and correction algorithm and its implementation using CMOS analog circuits, which are integrated with the image sensor at the pixel and column levels. During photocurrent integration, the circuit detects defective values in parallel at each pixel using simple arithmetic operations within a neighborhood. At the image-column level, the circuit replaces the defective pixels with the median value of their neighborhood. To validate our approach, we designed a 128×128-pixel imager in a 0.35µm CMOS process, which integrates our defective-pixel detection/correction circuits and processes images at 694 frames per second, according to post-layout simulations. Operating at that frame rate, our proposed algorithm and its CMOS implementation produce better results than current state-of-the-art algorithms: it achieves a Peak Signal to Noise Ratio (PSNR) and Image Enhancement Factor (IEF) of 45 dB and 198.4, respectively, in images with 0.5% random defective pixels, and a PSNR of 44.4 dB and IEF of 194.2, respectively, in images with 1.0% random defective pixels.


Assuntos
Algoritmos , Aumento da Imagem , Humanos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador , Ruído , Razão Sinal-Ruído
5.
Neuroimage ; 262: 119550, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35944796

RESUMO

The study of short association fibers is still an incomplete task due to their higher inter-subject variability and the smaller size of this kind of fibers in comparison to known long association bundles. However, their description is essential to understand human brain dysfunction and better characterize the human brain connectome. In this work, we present a multi-subject atlas of short association fibers, which was computed using a superficial white matter bundle identification method based on fiber clustering. To create the atlas, we used probabilistic tractography from one hundred subjects from the HCP database, aligned with non-linear registration. The method starts with an intra-subject clustering of short fibers (30-85 mm). Based on a cortical atlas, the intra-subject cluster centroids from all subjects are segmented to identify the centroids connecting each region of interest (ROI) of the atlas. To reduce computational load, the centroids from each ROI group are randomly separated into ten subgroups. Then, an inter-subject hierarchical clustering is applied to each centroid subgroup, followed by a second level of clustering to select the most-reproducible clusters across subjects for each ROI group. Finally, the clusters are labeled according to the regions that they connect, and clustered to create the final bundle atlas. The resulting atlas is composed of 525 bundles of superficial short association fibers along the whole brain, with 384 bundles connecting pairs of different ROIs and 141 bundles connecting portions of the same ROI. The reproducibility of the bundles was verified using automatic segmentation on three different tractogram databases. Results for deterministic and probabilistic tractography data show high reproducibility, especially for probabilistic tractography in HCP data. In comparison to previous work, our atlas features a higher number of bundles and greater cortical surface coverage.


Assuntos
Conectoma , Substância Branca , Encéfalo/diagnóstico por imagem , Análise por Conglomerados , Humanos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Substância Branca/diagnóstico por imagem
6.
Eur J Nucl Med Mol Imaging ; 49(2): 563-584, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34328531

RESUMO

PURPOSE: The purpose of this study is to develop and validate a 3D deep learning model that predicts the final clinical diagnosis of Alzheimer's disease (AD), dementia with Lewy bodies (DLB), mild cognitive impairment due to Alzheimer's disease (MCI-AD), and cognitively normal (CN) using fluorine 18 fluorodeoxyglucose PET (18F-FDG PET) and compare model's performance to that of multiple expert nuclear medicine physicians' readers. MATERIALS AND METHODS: Retrospective 18F-FDG PET scans for AD, MCI-AD, and CN were collected from Alzheimer's disease neuroimaging initiative (556 patients from 2005 to 2020), and CN and DLB cases were from European DLB Consortium (201 patients from 2005 to 2018). The introduced 3D convolutional neural network was trained using 90% of the data and externally tested using 10% as well as comparison to human readers on the same independent test set. The model's performance was analyzed with sensitivity, specificity, precision, F1 score, receiver operating characteristic (ROC). The regional metabolic changes driving classification were visualized using uniform manifold approximation and projection (UMAP) and network attention. RESULTS: The proposed model achieved area under the ROC curve of 96.2% (95% confidence interval: 90.6-100) on predicting the final diagnosis of DLB in the independent test set, 96.4% (92.7-100) in AD, 71.4% (51.6-91.2) in MCI-AD, and 94.7% (90-99.5) in CN, which in ROC space outperformed human readers performance. The network attention depicted the posterior cingulate cortex is important for each neurodegenerative disease, and the UMAP visualization of the extracted features by the proposed model demonstrates the reality of development of the given disorders. CONCLUSION: Using only 18F-FDG PET of the brain, a 3D deep learning model could predict the final diagnosis of the most common neurodegenerative disorders which achieved a competitive performance compared to the human readers as well as their consensus.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Aprendizado Profundo , Doença por Corpos de Lewy , Doenças Neurodegenerativas , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Fluordesoxiglucose F18 , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Estudos Retrospectivos
7.
Chirality ; 34(2): 396-420, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34788903

RESUMO

Diastereoisomeric stigmasterol oxiranes 4, 5, 8, and 9 are known phytosterol oxidation products (POPs) that have been evaluated for their cytotoxicity, although the results are of limited significance since, in most cases, they were evaluated as mixtures. Consequently, to establish biological activity hierarchy of these oxides, it is critical to evaluate individual pure POPs. Therefore, we now describe the obtention of individual molecules and their absolute configuration (AC) determination. The two acetylated C-5-C-6 oxiranes 6 and 7; the two acetylated C-22-C-23 oxides 10 and 11, obtained by means of Δ5 double bond protection-deprotection; and the four C-5-C-6, C-22-C-23 diepoxystigmasteryl acetates 19-22 were now individually gained and their AC determined by vibrational circular dichroism. Vibrational modes associated with the C-5-C-6 and the C-22-C-23 bonds were identified in dioxiranes 19-22 and used to assign the AC of monoepoxides 6, 7, 10, and 11. The AC of biological active non-acetylated molecules follows immediately. Due to the scarce spectroscopic information available for these POPs, the 1 H and 13 C NMR chemical shifts of 3-22 were assigned using 1D- and 2D-NMR experiments.


Assuntos
Compostos de Epóxi , Estigmasterol , Dicroísmo Circular , Estrutura Molecular , Estereoisomerismo , Vibração
8.
BMC Med Inform Decis Mak ; 22(Suppl 6): 318, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476613

RESUMO

BACKGROUND: In recent years, neuroimaging with deep learning (DL) algorithms have made remarkable advances in the diagnosis of neurodegenerative disorders. However, applying DL in different medical domains is usually challenged by lack of labeled data. To address this challenge, transfer learning (TL) has been applied to use state-of-the-art convolution neural networks pre-trained on natural images. Yet, there are differences in characteristics between medical and natural images, also image classification and targeted medical diagnosis tasks. The purpose of this study is to investigate the performance of specialized and TL in the classification of neurodegenerative disorders using 3D volumes of 18F-FDG-PET brain scans. RESULTS: Results show that TL models are suboptimal for classification of neurodegenerative disorders, especially when the objective is to separate more than two disorders. Additionally, specialized CNN model provides better interpretations of predicted diagnosis. CONCLUSIONS: TL can indeed lead to superior performance on binary classification in timely and data efficient manner, yet for detecting more than a single disorder, TL models do not perform well. Additionally, custom 3D model performs comparably to TL models for binary classification, and interestingly perform better for diagnosis of multiple disorders. The results confirm the superiority of the custom 3D-CNN in providing better explainable model compared to TL adopted ones.


Assuntos
Redes Neurais de Computação , Doenças Neurodegenerativas , Humanos , Aprendizado de Máquina
9.
Sensors (Basel) ; 22(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35459025

RESUMO

The design of cooperative advanced driver assistance systems (C-ADAS) involves a holistic and systemic vision that considers the bidirectional interaction among three main elements: the driver, the vehicle, and the surrounding environment. The evolution of these systems reflects this need. In this work, we present a survey of C-ADAS and describe a conceptual architecture that includes the driver, vehicle, and environment and their bidirectional interactions. We address the remote operation of this C-ADAS based on the Internet of vehicles (IoV) paradigm, as well as the involved enabling technologies. We describe the state of the art and the research challenges present in the development of C-ADAS. Finally, to quantify the performance of C-ADAS, we describe the principal evaluation mechanisms and performance metrics employed in these systems.


Assuntos
Acidentes de Trânsito , Condução de Veículo , Equipamentos de Proteção , Inquéritos e Questionários , Tecnologia
10.
Sensors (Basel) ; 22(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080999

RESUMO

Object location is a crucial computer vision method often used as a previous stage to object classification. Object-location algorithms require high computational and memory resources, which poses a difficult challenge for portable and low-power devices, even when the algorithm is implemented using dedicated digital hardware. Moving part of the computation to the imager may reduce the memory requirements of the digital post-processor and exploit the parallelism available in the algorithm. This paper presents the architecture of a Smart Imaging Sensor (SIS) that performs object location using pixel-level parallelism. The SIS is based on a custom smart pixel, capable of computing frame differences in the analog domain, and a digital coprocessor that performs morphological operations and connected components to determine the bounding boxes of the detected objects. The smart-pixel array implements on-pixel temporal difference computation using analog memories to detect motion between consecutive frames. Our SIS can operate in two modes: (1) as a conventional image sensor and (2) as a smart sensor which delivers a binary image that highlights the pixels in which movement is detected between consecutive frames and the object bounding boxes. In this paper, we present the design of the smart pixel and evaluate its performance using post-parasitic extraction on a 0.35 µm mixed-signal CMOS process. With a pixel-pitch of 32 µm × 32 µm, we achieved a fill factor of 28%. To evaluate the scalability of the design, we ported the layout to a 0.18 µm process, achieving a fill factor of 74%. On an array of 320×240 smart pixels, the circuit operates at a maximum frame rate of 3846 frames per second. The digital coprocessor was implemented and validated on a Xilinx Artix-7 XC7A35T field-programmable gate array that runs at 125 MHz, locates objects in a video frame in 0.614 µs, and has a power consumption of 58 mW.


Assuntos
Algoritmos , Computadores , Movimento (Física)
11.
Sensors (Basel) ; 21(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918668

RESUMO

Convolutional neural networks (CNN) have been extensively employed for image classification due to their high accuracy. However, inference is a computationally-intensive process that often requires hardware acceleration to operate in real time. For mobile devices, the power consumption of graphics processors (GPUs) is frequently prohibitive, and field-programmable gate arrays (FPGA) become a solution to perform inference at high speed. Although previous works have implemented CNN inference on FPGAs, their high utilization of on-chip memory and arithmetic resources complicate their application on resource-constrained edge devices. In this paper, we present a scalable, low power, low resource-utilization accelerator architecture for inference on the MobileNet V2 CNN. The architecture uses a heterogeneous system with an embedded processor as the main controller, external memory to store network data, and dedicated hardware implemented on reconfigurable logic with a scalable number of processing elements (PE). Implemented on a XCZU7EV FPGA running at 200 MHz and using four PEs, the accelerator infers with 87% top-5 accuracy and processes an image of 224×224 pixels in 220 ms. It consumes 7.35 W of power and uses less than 30% of the logic and arithmetic resources used by other MobileNet FPGA accelerators.

12.
Sensors (Basel) ; 21(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919130

RESUMO

In this paper, we present the architecture of a smart imaging sensor (SIS) for face recognition, based on a custom-design smart pixel capable of computing local spatial gradients in the analog domain, and a digital coprocessor that performs image classification. The SIS uses spatial gradients to compute a lightweight version of local binary patterns (LBP), which we term ringed LBP (RLBP). Our face recognition method, which is based on Ahonen's algorithm, operates in three stages: (1) it extracts local image features using RLBP, (2) it computes a feature vector using RLBP histograms, (3) it projects the vector onto a subspace that maximizes class separation and classifies the image using a nearest neighbor criterion. We designed the smart pixel using the TSMC 0.35 µm mixed-signal CMOS process, and evaluated its performance using postlayout parasitic extraction. We also designed and implemented the digital coprocessor on a Xilinx XC7Z020 field-programmable gate array. The smart pixel achieves a fill factor of 34% on the 0.35 µm process and 76% on a 0.18 µm process with 32 µm × 32 µm pixels. The pixel array operates at up to 556 frames per second. The digital coprocessor achieves 96.5% classification accuracy on a database of infrared face images, can classify a 150×80-pixel image in 94 µs, and consumes 71 mW of power.


Assuntos
Reconhecimento Facial , Algoritmos , Análise por Conglomerados , Face/diagnóstico por imagem
13.
Alzheimers Dement ; 17(8): 1277-1286, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33528089

RESUMO

INTRODUCTION: We assessed the influence of education as a proxy of cognitive reserve and age on the dementia with Lewy bodies (DLB) metabolic pattern. METHODS: Brain 18F-fluorodeoxyglucose positron emission tomography and clinical/demographic information were available in 169 probable DLB patients included in the European DLB-consortium database. Principal component analysis identified brain regions relevant to local data variance. A linear regression model was applied to generate age- and education-sensitive maps corrected for Mini-Mental State Examination score, sex (and either education or age). RESULTS: Age negatively covaried with metabolism in bilateral middle and superior frontal cortex, anterior and posterior cingulate, reducing the expression of the DLB-typical cingulate island sign (CIS). Education negatively covaried with metabolism in the left inferior parietal cortex and precuneus (making the CIS more prominent). DISCUSSION: These findings point out the importance of tailoring interpretation of DLB biomarkers considering the concomitant effect of individual, non-disease-related variables such as age and cognitive reserve.


Assuntos
Doença de Alzheimer , Escolaridade , Lobo Frontal/metabolismo , Giro do Cíngulo/metabolismo , Doença por Corpos de Lewy/metabolismo , Fatores Etários , Idoso , Encéfalo/metabolismo , Europa (Continente) , Fluordesoxiglucose F18/metabolismo , Humanos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Tomografia por Emissão de Pósitrons
14.
Ann Neurol ; 85(5): 715-725, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30805951

RESUMO

OBJECTIVE: To identify brain regions whose metabolic impairment contributes to dementia with Lewy bodies (DLB) clinical core features expression and to assess the influence of severity of global cognitive impairment on the DLB hypometabolic pattern. METHODS: Brain fluorodeoxyglucose positron emission tomography and information on core features were available in 171 patients belonging to the imaging repository of the European DLB Consortium. Principal component analysis was applied to identify brain regions relevant to the local data variance. A linear regression model was applied to generate core-feature-specific patterns controlling for the main confounding variables (Mini-Mental State Examination [MMSE], age, education, gender, and center). Regression analysis to the locally normalized intensities was performed to generate an MMSE-sensitive map. RESULTS: Parkinsonism negatively covaried with bilateral parietal, precuneus, and anterior cingulate metabolism; visual hallucinations (VH) with bilateral dorsolateral-frontal cortex, posterior cingulate, and parietal metabolism; and rapid eye movement sleep behavior disorder (RBD) with bilateral parieto-occipital cortex, precuneus, and ventrolateral-frontal metabolism. VH and RBD shared a positive covariance with metabolism in the medial temporal lobe, cerebellum, brainstem, basal ganglia, thalami, and orbitofrontal and sensorimotor cortex. Cognitive fluctuations negatively covaried with occipital metabolism and positively with parietal lobe metabolism. MMSE positively covaried with metabolism in the left superior frontal gyrus, bilateral-parietal cortex, and left precuneus, and negatively with metabolism in the insula, medial frontal gyrus, hippocampus in the left hemisphere, and right cerebellum. INTERPRETATION: Regions of more preserved metabolism are relatively consistent across the variegate DLB spectrum. By contrast, core features were associated with more prominent hypometabolism in specific regions, thus suggesting a close clinical-imaging correlation, reflecting the interplay between topography of neurodegeneration and clinical presentation in DLB patients. Ann Neurol 2019;85:715-725.


Assuntos
Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/metabolismo , Redes e Vias Metabólicas/fisiologia , Tomografia por Emissão de Pósitrons/tendências , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino
15.
Mov Disord ; 35(4): 595-605, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31840326

RESUMO

BACKGROUND: Striatal dopamine deficiency and metabolic changes are well-known phenomena in dementia with Lewy bodies and can be quantified in vivo by 123 I-Ioflupane brain single-photon emission computed tomography of dopamine transporter and 18 F-fluorodesoxyglucose PET. However, the linkage between both biomarkers is ill-understood. OBJECTIVE: We used the hitherto largest study cohort of combined imaging from the European consortium to elucidate the role of both biomarkers in the pathophysiological course of dementia with Lewy bodies. METHODS: We compared striatal dopamine deficiency and glucose metabolism of 84 dementia with Lewy body patients and comparable healthy controls. After normalization of data, we tested their correlation by region-of-interest-based and voxel-based methods, controlled for study center, age, sex, education, and current cognitive impairment. Metabolic connectivity was analyzed by inter-region coefficients stratified by dopamine deficiency and compared to healthy controls. RESULTS: There was an inverse relationship between striatal dopamine availability and relative glucose hypermetabolism, pronounced in the basal ganglia and in limbic regions. With increasing dopamine deficiency, metabolic connectivity showed strong deteriorations in distinct brain regions implicated in disease symptoms, with greatest disruptions in the basal ganglia and limbic system, coincident with the pattern of relative hypermetabolism. CONCLUSIONS: Relative glucose hypermetabolism and disturbed metabolic connectivity of limbic and basal ganglia circuits are metabolic correlates of dopamine deficiency in dementia with Lewy bodies. Identification of specific metabolic network alterations in patients with early dopamine deficiency may serve as an additional supporting biomarker for timely diagnosis of dementia with Lewy bodies. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença por Corpos de Lewy , Encéfalo , Estudos de Coortes , Dopamina , Humanos , Corpos de Lewy , Doença por Corpos de Lewy/diagnóstico por imagem
16.
Biochem Genet ; 57(2): 301-322, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30284127

RESUMO

The sensory properties of cacao beans are linked to the chemical composition of the seeds, and both characteristics are the partial results of its allelic composition. Therefore, it is useful to search for molecular markers associated with these traits. We perform multiple regression analysis to associate previously generated data of alleles generated with 12 SSR (of cultivated cacao trees) with data obtained from chemical and sensory characterization (of beans) of plants grown in the southern region from Mexico. When the association was significant, the mathematical models for predictive purposes were proposed. All phenotypic traits evaluated showed equations with setting values R2 > 0.5. All chemical characters tested have a significant association with at least two alleles (P < 0.05). In addition, the fat content was associated with six molecular markers (mTcCIR03209, mTcCIR12188, mTcCIR19286, mTcCIR07150, mTcCIR19310). The most common allele was mTcCIR12188, which was associated with the contents of eicosanoic acid, moisture, fat and total polyphenols content. The mTcCIR28362 allele is associated with sensory characters bitterness, musty odor, and roasted odor. These alleles could be useful as molecular markers of chemical and sensory characteristics of cacao samples.


Assuntos
Cacau/genética , Característica Quantitativa Herdável , Sementes/genética , Marcadores Genéticos
17.
J Food Sci Technol ; 55(12): 4747-4757, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30482970

RESUMO

Composite films with Aloe vera (A), chitosan (Ch) and essential oils (EOs) were formulated. Six of the twelve combinations tested formed films: A70Ch30, A70Ch30-15, A60Ch40, A60Ch40-15, A50Ch50, and A50Ch50-15. The A60Ch40-15 film showed the best physicochemical characteristics as well as the greatest in vitro antifungal activity. Although the A90Ch10 and A80Ch20-15 mixtures did not form films, their solutions showed high antifungal activity in vitro. Based on multivariate analysis of the data, A60Ch40-15, A90Ch10 and A80Ch20-15 films were selected as coating treatments for papaya during storage at 30 ± 2 °C and 80% RH. Uncoated fruits (control 1) and treated with synthetic fungicide (control 2) were used as control. Coated fruits showed lower respiration rate, greater firmness and fewer changes in external coloration compared to control. Furthermore, these coatings reduced the incidence and severity of fungal disease by 40-50% compared to control 2. Aloe vera-chitosan films (A90Ch10 and A60Ch40-15), enriched with the EOs of cinnamon (10 mL L-1) and thyme (10 mL L-1), improved quality of the fruit (higher firmness, lower CO2 content, less internal color change) with 50% less disease incidence during storage at room temperature.

18.
Sensors (Basel) ; 16(7)2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27447637

RESUMO

Images rendered by uncooled microbolometer-based infrared (IR) cameras are severely degraded by the spatial non-uniformity (NU) noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS) estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘ C, when the array's temperature varies by approximately 15 ∘ C.

19.
Arch Latinoam Nutr ; 66(3): 239-254, 2016 Sep.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-29870611

RESUMO

The flavor and aroma of cacao (Theobroma cacao) beans were the main reasons that promoted its domestication and food-use by pre-Columbian peoples of Mesoamerica. Polyphenols and alkaloids are compounds that directly affect the flavor of the cocoa beans and indirectly on the flavor precursors. The alkaloids are associated with bitterness; its concentration is related to the cultivar and its modifying through the processing. Polyphenols molecules are responsible together with other molecules of the astringency (not desirable in chocolate), but also are responsible for antioxidant properties, very desirable by consumers. This review focuses on aspects of the biosynthesis of these important molecules in cocoa beans as well as implications in taste and flavor. The changes of these molecules that occur during processing are also approached.


Assuntos
Alcaloides/biossíntese , Cacau/química , Manipulação de Alimentos/métodos , Polifenóis/biossíntese , Paladar , Fermentação , Manipulação de Alimentos/normas , Controle de Qualidade
20.
Phys Rev Lett ; 115(3): 030503, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26230776

RESUMO

Device-independent quantum communication will require a loophole-free violation of Bell inequalities. In typical scenarios where line of sight between the communicating parties is not available, it is convenient to use energy-time entangled photons due to intrinsic robustness while propagating over optical fibers. Here we show an energy-time Clauser-Horne-Shimony-Holt Bell inequality violation with two parties separated by 3.7 km over the deployed optical fiber network belonging to the University of Concepción in Chile. Remarkably, this is the first Bell violation with spatially separated parties that is free of the postselection loophole, which affected all previous in-field long-distance energy-time experiments. Our work takes a further step towards a fiber-based loophole-free Bell test, which is highly desired for secure quantum communication due to the widespread existing telecommunication infrastructure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA