Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Nature ; 592(7856): 799-803, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854232

RESUMO

Mammalian development, adult tissue homeostasis and the avoidance of severe diseases including cancer require a properly orchestrated cell cycle, as well as error-free genome maintenance. The key cell-fate decision to replicate the genome is controlled by two major signalling pathways that act in parallel-the MYC pathway and the cyclin D-cyclin-dependent kinase (CDK)-retinoblastoma protein (RB) pathway1,2. Both MYC and the cyclin D-CDK-RB axis are commonly deregulated in cancer, and this is associated with increased genomic instability. The autophagic tumour-suppressor protein AMBRA1 has been linked to the control of cell proliferation, but the underlying molecular mechanisms remain poorly understood. Here we show that AMBRA1 is an upstream master regulator of the transition from G1 to S phase and thereby prevents replication stress. Using a combination of cell and molecular approaches and in vivo models, we reveal that AMBRA1 regulates the abundance of D-type cyclins by mediating their degradation. Furthermore, by controlling the transition from G1 to S phase, AMBRA1 helps to maintain genomic integrity during DNA replication, which counteracts developmental abnormalities and tumour growth. Finally, we identify the CHK1 kinase as a potential therapeutic target in AMBRA1-deficient tumours. These results advance our understanding of the control of replication-phase entry and genomic integrity, and identify the AMBRA1-cyclin D pathway as a crucial cell-cycle-regulatory mechanism that is deeply interconnected with genomic stability in embryonic development and tumorigenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciclina D/metabolismo , Instabilidade Genômica , Fase S , Animais , Linhagem Celular , Proliferação de Células , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA , Regulação da Expressão Gênica no Desenvolvimento , Genes Supressores de Tumor , Humanos , Camundongos , Camundongos Knockout , Mutações Sintéticas Letais
2.
Proc Natl Acad Sci U S A ; 121(25): e2400566121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38870061

RESUMO

Intrinsic and acquired resistance to mitogen-activated protein kinase inhibitors (MAPKi) in melanoma remains a major therapeutic challenge. Here, we show that the clinical development of resistance to MAPKi is associated with reduced tumor expression of the melanoma suppressor Autophagy and Beclin 1 Regulator 1 (AMBRA1) and that lower expression levels of AMBRA1 predict a poor response to MAPKi treatment. Functional analyses show that loss of AMBRA1 induces phenotype switching and orchestrates an extracellular signal-regulated kinase (ERK)-independent resistance mechanism by activating focal adhesion kinase 1 (FAK1). In both in vitro and in vivo settings, melanomas with low AMBRA1 expression exhibit intrinsic resistance to MAPKi therapy but higher sensitivity to FAK1 inhibition. Finally, we show that the rapid development of resistance in initially MAPKi-sensitive melanomas can be attributed to preexisting subclones characterized by low AMBRA1 expression and that cotreatment with MAPKi and FAK1 inhibitors (FAKi) effectively prevents the development of resistance in these tumors. In summary, our findings underscore the value of AMBRA1 expression for predicting melanoma response to MAPKi and supporting the therapeutic efficacy of FAKi to overcome MAPKi-induced resistance.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Resistencia a Medicamentos Antineoplásicos , Melanoma , Inibidores de Proteínas Quinases , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Animais , Camundongos , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Feminino
3.
Cell Mol Life Sci ; 80(9): 251, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37584777

RESUMO

AMBRA1 is a crucial factor for nervous system development, and its function has been mainly associated with autophagy. It has been also linked to cell proliferation control, through its ability to regulate c-Myc and D-type cyclins protein levels, thus regulating G1-S transition. However, it remains still unknown whether AMBRA1 is differentially regulated during the cell cycle, and if this pro-autophagy protein exerts a direct role in controlling mitosis too. Here we show that AMBRA1 is phosphorylated during mitosis on multiple sites by CDK1 and PLK1, two mitotic kinases. Moreover, we demonstrate that AMBRA1 phosphorylation at mitosis is required for a proper spindle function and orientation, driven by NUMA1 protein. Indeed, we show that the localization and/or dynamics of NUMA1 are strictly dependent on AMBRA1 presence, phosphorylation and binding ability. Since spindle orientation is critical for tissue morphogenesis and differentiation, our findings could account for an additional role of AMBRA1 in development and cancer ontogenesis.


Assuntos
Proteínas Serina-Treonina Quinases , Fuso Acromático , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitose , Ciclo Celular , Células HeLa , Proteína Quinase CDC2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
4.
EMBO Rep ; 22(1): e50500, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33245190

RESUMO

The denitrosylase S-nitrosoglutathione reductase (GSNOR) has been suggested to sustain mitochondrial removal by autophagy (mitophagy), functionally linking S-nitrosylation to cell senescence and aging. In this study, we provide evidence that GSNOR is induced at the translational level in response to hydrogen peroxide and mitochondrial ROS. The use of selective pharmacological inhibitors and siRNA demonstrates that GSNOR induction is an event downstream of the redox-mediated activation of ATM, which in turn phosphorylates and activates CHK2 and p53 as intermediate players of this signaling cascade. The modulation of ATM/GSNOR axis, or the expression of a redox-insensitive ATM mutant influences cell sensitivity to nitrosative and oxidative stress, impairs mitophagy and affects cell survival. Remarkably, this interplay modulates T-cell activation, supporting the conclusion that GSNOR is a key molecular effector of the antioxidant function of ATM and providing new clues to comprehend the pleiotropic effects of ATM in the context of immune function.


Assuntos
Aldeído Oxirredutases , Mitofagia , Aldeído Oxirredutases/metabolismo , Senescência Celular , Oxirredução , Estresse Oxidativo/genética
5.
Nitric Oxide ; 122-123: 1-5, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35182743

RESUMO

S-nitrosylation of proteins is a nitric oxide (NO)-based post-translational modification of cysteine residues. By removing the NO moiety from S-nitrosothiol adducts, denitrosylases restore sulfhydryl protein pool and act as downstream tuners of S-nitrosylation signaling. Alterations in the S-nitrosylation/denitrosylation dynamics are implicated in many pathological states, including cancer ontogenesis and progression, skeletal muscle myogenesis and function. Here, we aim to provide and link different lines of evidence, and elaborate on the possible role of S-nitrosylation/denitrosylation signaling in rhabdomyosarcoma, one of the most common pediatric mesenchymal malignancy.


Assuntos
Rabdomiossarcoma , S-Nitrosotióis , Criança , Humanos , Desenvolvimento Muscular , Óxido Nítrico/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , S-Nitrosotióis/metabolismo
6.
Arch Biochem Biophys ; 710: 108977, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34174223

RESUMO

As mitochondria are vulnerable to oxidative damage and represent the main source of reactive oxygen species (ROS), they are considered key tuners of ROS metabolism and buffering, whose dysfunction can progressively impact neuronal networks and disease. Defects in DNA repair and DNA damage response (DDR) may also affect neuronal health and lead to neuropathology. A number of congenital DNA repair and DDR defective syndromes, indeed, show neurological phenotypes, and a growing body of evidence indicate that defects in the mechanisms that control genome stability in neurons acts as aging-related modifiers of common neurodegenerative diseases such as Alzheimer, Parkinson's, Huntington diseases and Amyotrophic Lateral Sclerosis. In this review we elaborate on the established principles and recent concepts supporting the hypothesis that deficiencies in either DNA repair or DDR might contribute to neurodegeneration via mechanisms involving mitochondrial dysfunction/deranged metabolism.


Assuntos
Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Dano ao DNA , Reparo do DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Genoma Humano , Genoma Mitocondrial , Instabilidade Genômica , Humanos , Redes e Vias Metabólicas , Dinâmica Mitocondrial , Mitofagia , Modelos Neurológicos , Mutação , Doenças Neurodegenerativas/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo
7.
Biochem J ; 477(19): 3649-3672, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33017470

RESUMO

S-nitrosylation, the post-translational modification of cysteines by nitric oxide, has been implicated in several cellular processes and tissue homeostasis. As a result, alterations in the mechanisms controlling the levels of S-nitrosylated proteins have been found in pathological states. In the last few years, a role in cancer has been proposed, supported by the evidence that various oncoproteins undergo gain- or loss-of-function modifications upon S-nitrosylation. Here, we aim at providing insight into the current knowledge about the role of S-nitrosylation in different aspects of cancer biology and report the main anticancer strategies based on: (i) reducing S-nitrosylation-mediated oncogenic effects, (ii) boosting S-nitrosylation to stimulate cell death, (iii) exploiting S-nitrosylation through synthetic lethality.


Assuntos
Neoplasias , Óxido Nítrico/metabolismo , Processamento de Proteína Pós-Traducional , Morte Celular , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia
8.
Proc Natl Acad Sci U S A ; 115(15): E3388-E3397, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581312

RESUMO

S-nitrosylation, a prototypic redox-based posttranslational modification, is frequently dysregulated in disease. S-nitrosoglutathione reductase (GSNOR) regulates protein S-nitrosylation by functioning as a protein denitrosylase. Deficiency of GSNOR results in tumorigenesis and disrupts cellular homeostasis broadly, including metabolic, cardiovascular, and immune function. Here, we demonstrate that GSNOR expression decreases in primary cells undergoing senescence, as well as in mice and humans during their life span. In stark contrast, exceptionally long-lived individuals maintain GSNOR levels. We also show that GSNOR deficiency promotes mitochondrial nitrosative stress, including excessive S-nitrosylation of Drp1 and Parkin, thereby impairing mitochondrial dynamics and mitophagy. Our findings implicate GSNOR in mammalian longevity, suggest a molecular link between protein S-nitrosylation and mitochondria quality control in aging, and provide a redox-based perspective on aging with direct therapeutic implications.


Assuntos
Envelhecimento/metabolismo , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Mitofagia , Envelhecimento/genética , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Animais , Senescência Celular , Humanos , Mamíferos/genética , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Óxido Nítrico/metabolismo , Estresse Nitrosativo , Processamento de Proteína Pós-Traducional , S-Nitrosotióis/metabolismo
11.
Biochim Biophys Acta ; 1853(3): 733-45, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25573430

RESUMO

The endoplasmic reticulum (ER) is a key organelle fundamental for the maintenance of cellular homeostasis and the determination of cell fate under stress conditions. Reticulon-1C (RTN-1C) is a member of the reticulon family proteins localized primarily on the ER membrane and known to regulate ER structure and function. Several cellular processes depend on the structural and functional crosstalk between different organelles, particularly on the endoplasmic reticulum and mitochondria. These dynamic contacts, called mitochondria-associated ER membranes (MAMs), are essential for the maintenance of mitochondrial structure and participate in lipid and calcium exchanges between the two organelles. In this study we investigated the impact of RTN-1C modulation on mitochondrial dynamics. We demonstrate that RTN-1C controls mitochondrial structure and function affecting intracellular Ca2+ homeostasis and lipid exchange between ER and mitochondria. We propose that these events depend on RTN-1C involvement in the regulation of ER-mitochondria cross-talk and define a role for RTN-1C in maintaining the function of contacts between the two organelles.


Assuntos
Retículo Endoplasmático/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Retículo Endoplasmático/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/genética , Membranas Mitocondriais/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Ligação Proteica , RNA Interferente Pequeno/farmacologia , Células Tumorais Cultivadas
12.
Cell Mol Life Sci ; 72(21): 4173-91, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25975226

RESUMO

The establishment of neuronal polarity and axonal outgrowth are key processes affecting neuronal migration and synapse formation, their impairment likely leading to cognitive deficits. Here we have found that the apoptotic protease activating factor 1 (Apaf1), apart from its canonical role in apoptosis, plays an additional function in cortical neurons, where its deficiency specifically impairs axonal growth. Given the central role played by centrosomes and microtubules in the polarized extension of the axon, our data suggest that Apaf1-deletion affects axonal outgrowth through an impairment of centrosome organization. In line with this, centrosomal protein expression, as well as their centrosomal localization proved to be altered upon Apaf1-deletion. Strikingly, we also found that Apaf1-loss affects trans-Golgi components and leads to a robust activation of AMP-dependent protein kinase (AMPK), this confirming the stressful conditions induced by Apaf1-deficiency. Since AMPK hyper-phosphorylation is known to impair a proper axon elongation, our finding contributes to explain the effect of Apaf1-deficiency on axogenesis. We also discovered that the signaling pathways mediating axonal growth and involving glycogen synthase kinase-3ß, liver kinase B1, and collapsing-response mediator protein-2 are altered in Apaf1-KO neurons. Overall, our results reveal a novel non-apoptotic role for Apaf1 in axonal outgrowth, suggesting that the neuronal phenotype due to Apaf1-deletion could not only be fully ascribed to apoptosis inhibition, but might also be the result of defects in axogenesis. The discovery of new molecules involved in axonal elongation has a clinical relevance since it might help to explain neurological abnormalities occurring during early brain development.


Assuntos
Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Axônios/patologia , Córtex Cerebral/patologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Axônios/fisiologia , Diferenciação Celular , Centrossomo/metabolismo , Córtex Cerebral/embriologia , Proteína 4 Homóloga a Disks-Large , Regulação da Expressão Gênica no Desenvolvimento , Complexo de Golgi/metabolismo , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/citologia , Neurônios/patologia , Neurônios/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
13.
Mediators Inflamm ; 2015: 536238, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26491229

RESUMO

Oxidative and nitrosative stresses have been reported as detrimental phenomena concurring to the onset of several neurodegenerative diseases. Here we reported that the ectopic modulation of the denitrosylating enzyme S-nitrosoglutathione reductase (GSNOR) differently impinges on the phenotype of two SH-SY5Y-based in vitro models of neurodegeneration, namely, Parkinson's disease (PD) and familial amyotrophic lateral sclerosis (fALS). In particular, we provide evidence that GSNOR-knocking down protects SH-SY5Y against PD toxins, while, by contrast, its upregulation is required for G93A-SOD1 expressing cells resistance to NO-releasing drugs. Although completely opposite, both conditions are characterized by Nrf2 localization in the nuclear compartment: in the first case induced by GSNOR silencing, while in the second one underlying the antinitrosative response. Overall, our results demonstrate that GSNOR expression has different effect on neuronal viability in dependence on the stimulus applied and suggest that GSNOR could be a responsive gene downstream of Nrf2 activation.


Assuntos
Aldeído Oxirredutases/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Doença de Parkinson/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Inativação Gênica , Humanos , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Estresse Oxidativo , Fenótipo , RNA Interferente Pequeno/metabolismo , Medula Espinal/metabolismo
14.
J Cell Sci ; 125(Pt 9): 2115-25, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22619229

RESUMO

Since the discovery of AMP-dependent protein kinase (AMPK), its fundamental role in regulating metabolic pathways and the molecular mechanism underlying the regulation of its activity by adenine nucleotides has been widely studied. AMPK is not only an energy-responsive enzyme, but it also senses redox signals. This review aims at recapitulating the recent lines of evidence that demonstrate the responsiveness of this kinase to metabolic and nitroxidative imbalance, thus providing new insights into the intimate networks of redox-based signals upstream of AMPK. In particular, we discuss its well-recognized activation downstream of mitochondrial dysfunction, debate the recent findings that AMPK is directly targeted by pro-oxidant species, and question alternative redox pathways that allow AMPK to be included into the large class of redox-sensing proteins. The possible therapeutic implications of the role of AMPK in redox-associated pathologies, such as cancer and neurodegeneration, are also discussed in light of recent advances that suggest a role for AMPK in the tuning of redox-dependent processes, such as apoptosis and autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina/metabolismo , Metabolismo Energético/fisiologia , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/química , Apoptose/fisiologia , Autofagia/fisiologia , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Oxirredução , Fosforilação , Espécies Reativas de Nitrogênio/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-38587367

RESUMO

Whether S-nitrosylation is the result of an unselective chemical process or enzymatically driven has been debated for years. A recent study by Zhou et al. identifies and characterizes the first S-nitroso-CoA (SNO-CoA)-assisted nitrosylase (SCAN) that catalyzes protein S-nitrosylation in mammals, including insulin receptor (INSR)/insulin receptor substrate 1 (IRS1), with implications for human metabolism.

16.
Cell Death Dis ; 14(4): 284, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085483

RESUMO

S-nitrosylation is a post-translational modification in which nitric oxide (NO) binds to the thiol group of cysteine, generating an S-nitrosothiol (SNO) adduct. S-nitrosylation has different physiological roles, and its alteration has also been linked to a growing list of pathologies, including cancer. SNO can affect the function and stability of different proteins, such as the mitochondrial chaperone TRAP1. Interestingly, the SNO site (C501) of TRAP1 is in the proximity of another cysteine (C527). This feature suggests that the S-nitrosylated C501 could engage in a disulfide bridge with C527 in TRAP1, resembling the well-known ability of S-nitrosylated cysteines to resolve in disulfide bridge with vicinal cysteines. We used enhanced sampling simulations and in-vitro biochemical assays to address the structural mechanisms induced by TRAP1 S-nitrosylation. We showed that the SNO site induces conformational changes in the proximal cysteine and favors conformations suitable for disulfide bridge formation. We explored 4172 known S-nitrosylated proteins using high-throughput structural analyses. Furthermore, we used a coarse-grained model for 44 protein targets to account for protein flexibility. This resulted in the identification of up to 1248 proximal cysteines, which could sense the redox state of the SNO site, opening new perspectives on the biological effects of redox switches. In addition, we devised two bioinformatic workflows ( https://github.com/ELELAB/SNO_investigation_pipelines ) to identify proximal or vicinal cysteines for a SNO site with accompanying structural annotations. Finally, we analyzed mutations in tumor suppressors or oncogenes in connection with the conformational switch induced by S-nitrosylation. We classified the variants as neutral, stabilizing, or destabilizing for the propensity to be S-nitrosylated and undergo the population-shift mechanism. The methods applied here provide a comprehensive toolkit for future high-throughput studies of new protein candidates, variant classification, and a rich data source for the research community in the NO field.


Assuntos
Proteínas de Choque Térmico HSP90 , Óxido Nítrico , Proteínas Oncogênicas , S-Nitrosotióis , Cisteína/metabolismo , Óxido Nítrico/metabolismo , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , Oxirredução , Processamento de Proteína Pós-Traducional , S-Nitrosotióis/metabolismo , Compostos de Sulfidrila/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo
17.
Cell Rep ; 42(1): 111997, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36656716

RESUMO

Nitric oxide (NO) production in the tumor microenvironment is a common element in cancer. S-nitrosylation, the post-translational modification of cysteines by NO, is emerging as a key transduction mechanism sustaining tumorigenesis. However, most oncoproteins that are regulated by S-nitrosylation are still unknown. Here we show that S-nitrosoglutathione reductase (GSNOR), the enzyme that deactivates S-nitrosylation, is hypo-expressed in several human malignancies. Using multiple tumor models, we demonstrate that GSNOR deficiency induces S-nitrosylation of focal adhesion kinase 1 (FAK1) at C658. This event enhances FAK1 autophosphorylation and sustains tumorigenicity by providing cancer cells with the ability to survive in suspension (evade anoikis). In line with these results, GSNOR-deficient tumor models are highly susceptible to treatment with FAK1 inhibitors. Altogether, our findings advance our understanding of the oncogenic role of S-nitrosylation, define GSNOR as a tumor suppressor, and point to GSNOR hypo-expression as a therapeutically exploitable vulnerability in cancer.


Assuntos
Álcool Desidrogenase , Quinase 1 de Adesão Focal , Neoplasias , Humanos , Aldeído Oxirredutases/metabolismo , Quinase 1 de Adesão Focal/genética , Neoplasias/genética , Óxido Nítrico/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Microambiente Tumoral , Álcool Desidrogenase/metabolismo
18.
Biochem J ; 437(3): 443-53, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21548882

RESUMO

We have demonstrated previously that the complex bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl)pyridine-N,N']copper(II), named [Cu(isaepy)(2)], induces AMPK (AMP-activated protein kinase)-dependent/p53-mediated apoptosis in tumour cells by targeting mitochondria. In the present study, we found that p38(MAPK) (p38 mitogen-activated protein kinase) is the molecular link in the phosphorylation cascade connecting AMPK to p53. Transfection of SH-SY5Y cells with a dominant-negative mutant of AMPK resulted in a decrease in apoptosis and a significant reduction in phospho-active p38(MAPK) and p53. Similarly, reverse genetics of p38(MAPK) yielded a reduction in p53 and a decrease in the extent of apoptosis, confirming an exclusive hierarchy of activation that proceeds via AMPK/p38(MAPK)/p53. Fuel supplies counteracted [Cu(isaepy)(2)]-induced apoptosis and AMPK/p38(MAPK)/p53 activation, with glucose being the most effective, suggesting a role for energetic imbalance in [Cu(isaepy)(2)] toxicity. Co-administration of 3BrPA (3-bromopyruvate), a well-known inhibitor of glycolysis, and succinate dehydrogenase, enhanced apoptosis and AMPK/p38(MAPK)/p53 signalling pathway activation. Under these conditions, no toxic effect was observed in SOD (superoxide dismutase)-overexpressing SH-SY5Y cells or in PCNs (primary cortical neurons), which are, conversely, sensitized to the combined treatment with [Cu(isaepy)(2)] and 3BrPA only if grown in low-glucose medium or incubated with the glucose-6-phosphate dehydrogenase inhibitor dehydroepiandrosterone. Overall, the results suggest that NADPH deriving from the pentose phosphate pathway contributes to PCN resistance to [Cu(isaepy)(2)] toxicity and propose its employment in combination with 3BrPA as possible tool for cancer treatment.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Compostos Organometálicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Piruvatos/uso terapêutico , Bases de Schiff/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Estrutura Molecular , Neuroblastoma/tratamento farmacológico , Neurônios/efeitos dos fármacos , Compostos Organometálicos/química , Oxindóis , Fosforilação , Bases de Schiff/química
19.
FEBS J ; 289(18): 5413-5425, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34228878

RESUMO

Angiogenesis is the process of blood vessel growth. The angiogenic switch consists of new blood vessel formation that, in carcinogenesis, can lead to the transition from a harmless cluster of dormant cells to a large tumorigenic mass with metastatic potential. Hypoxia, that is, the scarcity of oxygen, is a hallmark of solid tumors to which they adapt by activating hypoxia-inducible factor-1 (HIF-1), a transcription factor triggering de novo angiogenesis. HIF-1 and the angiogenic molecules that are expressed upon its activation are modulated by redox status. Modulations of the redox environment can influence the angiogenesis signaling at different levels, thereby impinging on the angiogenic switch. This review provides a molecular overview of the redox-sensitive steps in angiogenic signaling, the main molecular players involved, and their crosstalk with the unfolded protein response. New classes of inhibitors of these modulators which might act as antiangiogenic drugs in cancer are also discussed.


Assuntos
Fator 1 Induzível por Hipóxia , Neoplasias , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/patologia , Neovascularização Patológica/patologia , Oxirredução , Oxigênio
20.
Redox Biol ; 52: 102294, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35358852

RESUMO

The effects of Auranofin (AF) on protein expression and protein oxidation in A2780 cancer cells were investigated through a strategy based on simultaneous expression proteomics and redox proteomics determinations. Bioinformatics analysis of the proteomics data supports the view that the most critical cellular changes elicited by AF treatment consist of thioredoxin reductase inhibition, alteration of the cell redox state, impairment of the mitochondrial functions, metabolic changes associated with conversion to a glycolytic phenotype, induction of ER stress. The occurrence of the above cellular changes was extensively validated by performing direct biochemical assays. Our data are consistent with the concept that AF produces its effects through a multitarget mechanism that mainly affects the redox metabolism and the mitochondrial functions and results into severe ER stress. Results are discussed in the context of the current mechanistic knowledge existing on AF.


Assuntos
Auranofina , Neoplasias Ovarianas , Auranofina/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Oxirredução , Proteoma/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA