Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Prostate ; 82(16): 1547-1557, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35980831

RESUMO

BACKGROUND: Androgen deprivation therapy (ADT) has been the standard of care for advanced hormone-sensitive prostate cancer (PC), yet tumors invariably develop resistance resulting in castrate-resistant PC. The acute response of cancer cells to ADT includes apoptosis and cell death, but a large fraction remains arrested but viable. In this study, we focused on intensively characterizing the early metabolic changes that result after ADT to define potential metabolic targets for treatment. METHODS: A combination of mass spectrometry, optical metabolic imaging which noninvasively measures drug responses in cells, oxygen consumption rate, and protein expression analysis was used to characterize and block metabolic pathways over several days in multiple PC cell lines with variable hormone response status including ADT sensitive lines LNCaP and VCaP, and resistant C4-2 and DU145. RESULTS: Mass spectrometry analysis of LNCaP pre- and postexposure to ADT revealed an abundance of glycolytic intermediates after ADT. In LNCaP and VCaP, a reduction in the optical redox ratio [NAD(P)H/FAD], extracellular acidification rate, and a downregulation of key regulatory enzymes for fatty acid and glutamine utilization was acutely observed after ADT. Screening several metabolic inhibitors revealed that blocking fatty acid oxidation and synthesis reversed this stress response in the optical redox ratio seen with ADT alone in LNCaP and VCaP. In contrast, both cell lines demonstrated increased sensitivity to the glycolytic inhibitor 2-Deoxy- d-glucose(2-DG) and maintained sensitivity to electron transport chain inhibitor Malonate after ADT exposure. ADT followed by 2-DG results in synergistic cell death, a result not seen with simultaneous administration. CONCLUSIONS: Hormone-sensitive PC cells displayed altered metabolic profiles early after ADT including an overall depression in energy metabolism, induction of a quiescent/senescent phenotype, and sensitivity to selected metabolic inhibitors. Glycolytic blocking agents (e.g., 2-DG) as a sequential treatment after ADT may be promising.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Androgênios/metabolismo , Linhagem Celular Tumoral , Ácidos Graxos
2.
Cells ; 11(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35456030

RESUMO

Mice fed soy-based diets exhibit increased weight gain compared to mice fed casein-based diets, and the effects are more pronounced in a model of fragile X syndrome (FXS; Fmr1KO). FXS is a neurodevelopmental disability characterized by intellectual impairment, seizures, autistic behavior, anxiety, and obesity. Here, we analyzed body weight as a function of mouse age, diet, and genotype to determine the effect of diet (soy, casein, and grain-based) on weight gain. We also assessed plasma protein biomarker expression and behavior in response to diet. Juvenile Fmr1KO mice fed a soy protein-based rodent chow throughout gestation and postnatal development exhibit increased weight gain compared to mice fed a casein-based purified ingredient diet or grain-based, low phytoestrogen chow. Adolescent and adult Fmr1KO mice fed a soy-based infant formula diet exhibited increased weight gain compared to reference diets. Increased body mass was due to increased lean mass. Wild-type male mice fed soy-based infant formula exhibited increased learning in a passive avoidance paradigm, and Fmr1KO male mice had a deficit in nest building. Thus, at the systems level, consumption of soy-based diets increases weight gain and affects behavior. At the molecular level, a soy-based infant formula diet was associated with altered expression of numerous plasma proteins, including the adipose hormone leptin and the ß-amyloid degrading enzyme neprilysin. In conclusion, single-source, soy-based diets may contribute to the development of obesity and the exacerbation of neurological phenotypes in developmental disabilities, such as FXS.


Assuntos
Transtorno Autístico , Síndrome do Cromossomo X Frágil , Adolescente , Animais , Caseínas/metabolismo , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Humanos , Fórmulas Infantis , Masculino , Camundongos , Obesidade , Aumento de Peso
3.
Mol Cancer Ther ; 19(11): 2278-2287, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32943543

RESUMO

The initiation of androgen-deprivation therapy (ADT) induces susceptibilities in prostate cancer cells that make them vulnerable to synergistic treatment and enhanced cell death. Senescence results in cell-cycle arrest, but cells remain viable. In this study, we investigated the mechanisms by which prostate cancer cells undergo senescence in response to ADT, and determined whether an FDA-approved antidiabetic drug metformin has a synergistic effect with ADT in prostate cancer both in vitro and in vivo Our results show that longer term exposure to ADT induced senescence associated with p16INK4a and/or p27kip2 induction. The activation of PI3K/AKT and inactivation of AMPK in senescent cells resulted in mTORC1 activation. In addition, the antiapoptotic protein XIAP expression was increased in response to ADT. The addition of metformin following ADT induced apoptosis, attenuated mTOR activation, reduced senescent cell number in vitro, and inhibited tumor growth in prostate cancer patient-derived xenograft models. This study suggests that combining ADT and metformin may be a feasible therapeutic approach to remove persistent prostate cancer cells after ADT.


Assuntos
Androgênios/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metformina/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Mutações Sintéticas Letais , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular Tumoral , Senescência Celular/genética , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Sleep ; 43(11)2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32369586

RESUMO

STUDY OBJECTIVES: Accumulating evidence suggests a strong association between sleep, amyloid-beta (Aß) deposition, and Alzheimer's disease (AD). We sought to determine if (1) deficits in rest-activity rhythms and sleep are significant phenotypes in J20 AD mice, (2) metabotropic glutamate receptor 5 inhibitors (mGluR5) could rescue deficits in rest-activity rhythms and sleep, and (3) Aß levels are responsive to treatment with mGluR5 inhibitors. METHODS: Diurnal rest-activity levels were measured by actigraphy and sleep-wake patterns by electroencephalography, while animals were chronically treated with mGluR5 inhibitors. Behavioral tests were performed, and Aß levels measured in brain lysates. RESULTS: J20 mice exhibited a 4.5-h delay in the acrophase of activity levels compared to wild-type littermates and spent less time in rapid eye movement (REM) sleep during the second half of the light period. J20 mice also exhibited decreased non-rapid eye movement (NREM) delta power but increased NREM sigma power. The mGluR5 inhibitor CTEP rescued the REM sleep deficit and improved NREM delta and sigma power but did not correct rest-activity rhythms. No statistically significant differences were observed in Aß levels, rotarod performance, or the passive avoidance task following chronic mGluR5 inhibitor treatment. CONCLUSIONS: J20 mice have disruptions in rest-activity rhythms and reduced homeostatic sleep pressure (reduced NREM delta power). NREM delta power was increased following treatment with a mGluR5 inhibitor. Drug bioavailability was poor. Further work is necessary to determine if mGluR5 is a viable target for treating sleep phenotypes in AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Animais , Ritmo Circadiano , Eletroencefalografia , Camundongos , Sono , Sono REM
5.
Front Mol Neurosci ; 9: 147, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018172

RESUMO

Amyloid-beta protein precursor (APP) and metabolite levels are altered in fragile X syndrome (FXS) patients and in the mouse model of the disorder, Fmr1KO mice. Normalization of APP levels in Fmr1KO mice (Fmr1KO /APPHET mice) rescues many disease phenotypes. Thus, APP is a potential biomarker as well as therapeutic target for FXS. Hyperexcitability is a key phenotype of FXS. Herein, we determine the effects of APP levels on hyperexcitability in Fmr1KO brain slices. Fmr1KO /APPHET slices exhibit complete rescue of UP states in a neocortical hyperexcitability model and reduced duration of ictal discharges in a CA3 hippocampal model. These data demonstrate that APP plays a pivotal role in maintaining an appropriate balance of excitation and inhibition (E/I) in neural circuits. A model is proposed whereby APP acts as a rheostat in a molecular circuit that modulates hyperexcitability through mGluR5 and FMRP. Both over- and under-expression of APP in the context of the Fmr1KO increases seizure propensity suggesting that an APP rheostat maintains appropriate E/I levels but is overloaded by mGluR5-mediated excitation in the absence of FMRP. These findings are discussed in relation to novel treatment approaches to restore APP homeostasis in FXS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA