RESUMO
Tuft cells in mucosal tissues are key regulators of type 2 immunity. Here, we examined the impact of the microbiota on tuft cell biology in the intestine. Succinate induction of tuft cells and type 2 innate lymphoid cells was elevated with loss of gut microbiota. Colonization with butyrate-producing bacteria or treatment with butyrate suppressed this effect and reduced intestinal histone deacetylase activity. Epithelial-intrinsic deletion of the epigenetic-modifying enzyme histone deacetylase 3 (HDAC3) inhibited tuft cell expansion in vivo and impaired type 2 immune responses during helminth infection. Butyrate restricted stem cell differentiation into tuft cells, and inhibition of HDAC3 in adult mice and human intestinal organoids blocked tuft cell expansion. Collectively, these data define a HDAC3 mechanism in stem cells for tuft cell differentiation that is dampened by a commensal metabolite, revealing a pathway whereby the microbiota calibrate intestinal type 2 immunity.
Assuntos
Mucosa Intestinal , Microbiota , Adulto , Camundongos , Humanos , Animais , Células em Tufo , Butiratos/farmacologia , Butiratos/metabolismo , Imunidade Inata , Linfócitos/metabolismo , Intestinos , Histona Desacetilases/metabolismo , Diferenciação CelularRESUMO
Mast cell (MC) mediator release after crosslinking of surface-bound IgE antibody by ingested antigen underlies food allergy. However, IgE antibodies are not uniformly associated with food allergy, and intestinal MC load is an important determinant. Atopic dermatitis (AD), characterized by pruritis and cutaneous sensitization to allergens, including foods, is strongly associated with food allergy. Tape stripping mouse skin, a surrogate for scratching, caused expansion and activation of small intestinal MCs, increased intestinal permeability, and promoted food anaphylaxis in sensitized mice. Tape stripping caused keratinocytes to systemically release interleukin-33 (IL-33), which synergized with intestinal tuft-cell-derived IL-25 to drive the expansion and activation of intestinal type-2 innate lymphoid cells (ILC2s). These provided IL-4, which targeted MCs to expand in the intestine. Duodenal MCs were expanded in AD. In addition to promoting cutaneous sensitization to foods, scratching may promote food anaphylaxis in AD by expanding and activating intestinal MCs.
Assuntos
Dermatite Atópica/imunologia , Hipersensibilidade Alimentar/imunologia , Mucosa Intestinal/imunologia , Linfócitos/imunologia , Mastócitos/imunologia , Adolescente , Anafilaxia/imunologia , Animais , Proliferação de Células , Criança , Pré-Escolar , Feminino , Humanos , Imunoglobulina E/imunologia , Interleucina-13/metabolismo , Interleucina-33/metabolismo , Interleucina-4/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Pele/imunologia , Pele/lesõesRESUMO
Experimental IgE-mediated food allergy depends on intestinal anaphylaxis driven by interleukin-9 (IL-9). However, the primary cellular source of IL-9 and the mechanisms underlying the susceptibility to food-induced intestinal anaphylaxis remain unclear. Herein, we have reported the identification of multifunctional IL-9-producing mucosal mast cells (MMC9s) that can secrete prodigious amounts of IL-9 and IL-13 in response to IL-33, and mast cell protease-1 (MCPt-1) in response to antigen and IgE complex crosslinking, respectively. Repeated intragastric antigen challenge induced MMC9 development that required T cells, IL-4, and STAT6 transcription factor, but not IL-9 signals. Mice ablated of MMC9 induction failed to develop intestinal mastocytosis, which resulted in decreased food allergy symptoms that could be restored by adoptively transferred MMC9s. Finally, atopic patients that developed food allergy displayed increased intestinal expression of Il9- and MC-specific transcripts. Thus, the induction of MMC9s is a pivotal step to acquire the susceptibility to IgE-mediated food allergy.
Assuntos
Hipersensibilidade Alimentar/imunologia , Imunoglobulina E/imunologia , Interleucina-9/metabolismo , Mucosa Intestinal/imunologia , Mastócitos/imunologia , Mastocitose/imunologia , Transferência Adotiva , Anafilaxia/etiologia , Anafilaxia/imunologia , Animais , Sequência de Bases , Células da Medula Óssea/citologia , Linhagem da Célula , Quimases/biossíntese , Quimases/genética , Diarreia/etiologia , Diarreia/imunologia , Suscetibilidade a Doenças , Duodeno/imunologia , Duodeno/patologia , Hipersensibilidade Alimentar/etiologia , Hipersensibilidade Alimentar/patologia , Humanos , Hipersensibilidade Imediata/complicações , Interleucina-9/biossíntese , Interleucina-9/genética , Interleucinas/biossíntese , Interleucinas/metabolismo , Interleucinas/fisiologia , Mastócitos/metabolismo , Mastócitos/transplante , Mastocitose/patologia , Camundongos , Camundongos Endogâmicos , Dados de Sequência Molecular , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Ovalbumina/toxicidade , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Fator de Transcrição STAT6/fisiologia , Especificidade da Espécie , Linfócitos T/imunologiaRESUMO
BACKGROUND: Histamine is a critical mediator of anaphylaxis, a neurotransmitter, and a regulator of gastric acid secretion. Histidine decarboxylase is a rate-limiting enzyme for histamine synthesis. However, in vivo regulation of Hdc, the gene that encodes histidine decarboxylase, is poorly understood. OBJECTIVE: We sought to investigate how enhancers regulate Hdc gene transcription and histamine synthesis in resting conditions and in a mouse model of anaphylaxis. METHODS: H3K27 acetylation histone modification and chromatin accessibility were used to identify candidate enhancers. The enhancer activity of candidate enhancers was measured in a reporter gene assay, and the function enhancers were validated by CRISPR deletion. RESULTS: Deletion of the GC box, which binds to zinc finger transcription factors, in the proximal Hdc enhancer reduced Hdc gene transcription and histamine synthesis in mouse and human mast cell lines. Mast cells, basophils, brain cells, and stomach cells from GC box-deficient mice transcribed the Hdc gene much less than similar cells from wild-type mice, and Hdc GC box-deficient mice failed to develop anaphylaxis. CONCLUSION: The HDC GC box within the proximal enhancer in the mouse and human HDC gene is essential for Hdc gene transcription, histamine synthesis, and histamine-mediated anaphylaxis in vitro and in vivo.
Assuntos
Anafilaxia , Histidina Descarboxilase , Humanos , Camundongos , Animais , Histidina Descarboxilase/genética , Histamina/metabolismo , Anafilaxia/genética , Linhagem Celular , Transcrição GênicaRESUMO
BRD4 is a BET family protein that binds acetylated histones and regulates transcription. BET/BRD4 inhibitors block blood cancer growth and inflammation and serve as a new therapeutic strategy. However, the biological role of BRD4 in normal hematopoiesis and inflammation is not fully understood. Analysis of Brd4 conditional knockout (KO) mice showed that BRD4 is required for hematopoietic stem cell expansion and progenitor development. Nevertheless, BRD4 played limited roles in macrophage development and inflammatory response to LPS ChIP-seq analysis showed that despite its limited importance, BRD4 broadly occupied the macrophage genome and participated in super-enhancer (SE) formation. Although BRD4 is critical for SE formation in cancer, BRD4 was not required for macrophage SEs, as KO macrophages created alternate, BRD4-less SEs that compensated BRD4 loss. This and additional mechanisms led to the retention of inflammatory responses in macrophages. Our results illustrate a context-dependent role of BRD4 and plasticity of epigenetic regulation.
Assuntos
Biomarcadores/análise , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Inflamação/imunologia , Macrófagos Peritoneais/imunologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
BACKGROUND: Administering allergens in increasing doses can temporarily suppress IgE-mediated allergy and anaphylaxis by desensitizing mast cells and basophils; however, allergen administration during desensitization therapy can itself induce allergic responses. Several small molecule drugs and nutraceuticals have been used clinically and experimentally to suppress these allergic responses. OBJECTIVES: This study sought to optimize drug inhibition of IgE-mediated anaphylaxis. METHODS: Several agents were tested individually and in combination for ability to suppress IgE-mediated anaphylaxis in conventional mice, FcεRIα-humanized mice, and reconstituted immunodeficient mice that have human mast cells and basophils. Hypothermia was the readout for anaphylaxis; therapeutic efficacy was measured by degree of inhibition of hypothermia. Serum mouse mast cell protease 1 level was used to measure extent of mast cell degranulation. RESULTS: Histamine receptor 1 (HR1) antagonists, ß-adrenergic agonists, and a spleen tyrosine kinase (Syk) inhibitor were best at individually inhibiting IgE-mediated anaphylaxis. A Bruton's tyrosine kinase (BTK) inhibitor, administered alone, only inhibited hypothermia when FcεRI signaling was suboptimal. Combinations of these agents could completely or nearly completely inhibit IgE-mediated hypothermia in these models. Both Syk and BTK inhibition decreased mast cell degranulation, but only Syk inhibition also blocked desensitization. Many other agents that are used clinically and experimentally had little or no beneficial effect. CONCLUSIONS: Combinations of an HR1 antagonist, a ß-adrenergic agonist, and a Syk or a BTK inhibitor protect best against IgE-mediated anaphylaxis, while an HR1 antagonist plus a ß-adrenergic agonist ± a BTK antagonist is optimal for inhibiting IgE-mediated anaphylaxis without suppressing desensitization.
Assuntos
Anafilaxia/prevenção & controle , Imunoglobulina E/imunologia , Agonistas Adrenérgicos beta/uso terapêutico , Animais , Quimioterapia Combinada , Antagonistas dos Receptores Histamínicos/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidoresRESUMO
BACKGROUND: Mast cell and basophil activation by antigen cross-linking of FcεRI-bound IgE is central to allergy pathogenesis. We previously demonstrated global suppression of this process by rapid desensitization with anti-FcεRIα mAbs. OBJECTIVES: We sought to determine whether use of monovalent (mv) anti-FcεRIα mAbs increases desensitization safety without loss of efficacy. METHODS: mv anti-human (hu) FcεRIα mAbs were produced with mouse-derived immunoglobulin variable regions and huIgG1 or huIgG4 C regions and were used to suppress murine IgE-mediated anaphylaxis and food allergy. mAbs were administered as a single dose or as serially increasing doses to mice that express hu instead of mouse FcεRIα; mice that additionally have an allergy-promoting IL-4Rα mutation; and hu cord blood-reconstituted immunodeficient, hu cytokine-secreting, mice that have large numbers of activated hu mast cells. Anaphylaxis susceptibility was sometimes increased by treatment with IL-4 or a ß-adrenergic receptor antagonist. RESULTS: mv anti-hu FcεRIα mAbs are considerably less able than divalent mAbs are to induce anaphylaxis and deplete mast cell and basophil IgE, but mv mAbs still strongly suppress IgE-mediated disease. The mv mAbs can be safely administered as a single large dose to mice with typical susceptibility to anaphylaxis, while a rapid desensitization approach safely suppresses disease in mice with increased susceptibility. Our huIgG4 variant of mv anti-huFcεRIα mAb is safer than our huIgG1 variant is, apparently because reduced interactions with FcεRs decrease ability to indirectly cross-link FcεRI. CONCLUSIONS: mv anti-FcεRIα mAbs more safely suppress IgE-mediated anaphylaxis and food allergy than divalent variants of the same mAbs do. These mv mAbs may be useful for suppression of huIgE-mediated disease.
Assuntos
Anafilaxia/tratamento farmacológico , Antialérgicos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Hipersensibilidade Alimentar/tratamento farmacológico , Imunoglobulina E/imunologia , Receptores de IgE/imunologia , Anafilaxia/imunologia , Animais , Antialérgicos/farmacologia , Anticorpos Monoclonais/farmacologia , Feminino , Hipersensibilidade Alimentar/imunologia , Imunoglobulina G/imunologia , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/imunologia , Receptores de IgE/genética , Quinase Syk/imunologiaRESUMO
Immunoglobulins protect against disease to a considerable extent by activating complement and stimulatory immunoglobulin crystallizable fragment receptors (Ig FcRs), and aggregating microbial pathogens. Yet IgG1, the predominant murine serum Ig isotype, cannot activate complement by the classical pathway, binds more avidly to an inhibitory than to stimulatory FcRs, and has limited ability to aggregate pathogens. In these regards, it resembles human IgG4 (ref. 4). We hypothesized that limited ability to activate effector mechanisms might protect against immune complex immunopathology. Here we show that IgG1-deficient (γ1(-)) mice, immunized with a potent antigen, develop lethal renal disease soon after they begin to produce antigen-specific antibody, whereas similarly immunized wild-type mice remain healthy. Surprisingly, renal disease in this model is complement and FcR independent and results from immune complex precipitation in glomerular capillaries, as in some cryoglobulinaemic humans. IgG3, which self-associates to form large immune complexes, accounts for more than 97% of the mouse Ig in this cryoglobulin; furthermore, glomerular disease develops when mice are injected with IgG3 anti-trinitrophenyl (TNP) monoclonal antibody followed by a TNP-labelled protein. Renal disease is prevented in both active and passive immunization models by antigen-specific IgG1; other isotypes are less potent at preventing disease. These observations demonstrate the adaptive significance of Ig isotypes that poorly activate effector mechanisms, reveal an immune-complex-dependent, complement- and FcR-independent nephrotoxic mechanism, and suggest that isotypes that poorly activate effector mechanisms may be useful for inhibiting immune complex immunopathology.
Assuntos
Crioglobulinemia/complicações , Glomerulonefrite/etiologia , Glomerulonefrite/prevenção & controle , Imunoglobulina G/imunologia , Animais , Anticorpos Monoclonais/imunologia , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/imunologia , Antígenos/imunologia , Ligação Competitiva , Proteínas do Sistema Complemento , Crioglobulinemia/imunologia , Crioglobulinemia/patologia , Modelos Animais de Doenças , Feminino , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Cabras , Masculino , Camundongos , Receptores de IgG , Solubilidade , Trinitrobenzenos/imunologiaRESUMO
BACKGROUND: Anaphylaxis is classically mediated by allergen cross-linking of IgE bound to the α chain of FcεRI, the mast cell/basophil high affinity IgE receptor. Allergen cross-linking of the IgE/FcεRI complex activates these cells, inducing release of disease-causing mediators, cytokines, and enzymes. We previously demonstrated that IgE-mediated anaphylaxis could be safely prevented in wild-type BALB/c mice by rapid desensitization with anti-mouse FcεRIα mAb. OBJECTIVE: This study sought to use humanized mice to extend these results to humans. METHODS: We actively immunized huFcεRIα/F709 mice, which express human (hu) instead of mouse FcεRIα and a mutant IL-4 receptor that lacks inhibitory function. We passively immunized huFcεRIα mice, as well as human cord blood-reconstituted reNSGS mice, which are immune-deficient, produce mast cell-stimulating human cytokines, and develop numerous human mast cells. For desensitization, we used anti-huFcεRIα mAbs that bind FcεRIα regardless of its association with IgE (noncompeting mAbs), and/or mAbs that compete with IgE for huFcεRIα binding (competing mAbs). Anaphylaxis was induced by intravenous injection of antigen or anti-huIgE mAb. RESULTS: Anti-huFcεRIα mAb rapid desensitization was safer and more effective than allergen rapid desensitization and suppressed anaphylaxis more rapidly than omalizumab or ligelizumab. Rapid desensitization of naïve, IgE-sensitized huFcεRIα mice and huFcεRIα/F709 mice that were egg-allergic with anti-FcεRIα mAbs safely removed >98% of IgE from peritoneal mast cells and completely suppressed IgE-mediated anaphylaxis. Rapid desensitization of reNSGS mice with anti-FcεRIα mAbs also safely removed â¼98% of mast cell IgE and prevented IgE-mediated anaphylaxis. CONCLUSIONS: Rapid desensitization with anti-FcεRIα mAbs may be a safe, effective, and practical way to prevent IgE-mediated anaphylaxis.
Assuntos
Anafilaxia/imunologia , Anticorpos Monoclonais/farmacologia , Dessensibilização Imunológica/métodos , Receptores de IgE/antagonistas & inibidores , Anafilaxia/prevenção & controle , Animais , Humanos , Camundongos , Camundongos Endogâmicos BALB CRESUMO
Mast cells, well established effectors in allergic disease, can be activated by numerous stimuli. We previously found that the Fyn-Stat5B pathway is critical for FcεRI-stimulated mast cell function. Because IgG receptors employ similar signaling pathways, we investigated Fyn-Stat5B function downstream of FcγR. We report that FcγR elicits Fyn-dependent Stat5B tyrosine phosphorylation in mast cells. As we previously found for Fyn kinase, Stat5B is indispensable for IgG-mediated mast cell cytokine expression and secretion. However, Stat5B KO macrophages responded normally to FcγR signaling, indicating a lineage-restricted role for Stat5B. This was consistent in vivo, since passive FcγR activation induced anaphylaxis in a macrophage-dominated response even when Stat5B was deleted. We further investigated this lineage restriction using the K/BxN model of inflammatory arthritis. This model exhibits a rapid and transient mast cell-dependent joint inflammation followed days later by a macrophage- and neutrophil-dependent response. Consistent with our hypothesis, Fyn or Stat5B deficiency did not protect mice from late joint swelling, but greatly reduced the early mast cell-dependent response. This was associated with decreased joint and plasma histamine. We conclude that Fyn-Stat5B is a linage-restricted pathway critical for IgG-mediated mast cell responses.
Assuntos
Mastócitos/fisiologia , Receptores de IgG/metabolismo , Fator de Transcrição STAT5/metabolismo , Anafilaxia/imunologia , Animais , Degranulação Celular/fisiologia , Feminino , Humanos , Masculino , Mastócitos/citologia , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de IgE/metabolismo , Receptores de IgG/imunologia , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/imunologia , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Quinases da Família src/metabolismoRESUMO
Asparaginase (ASNase) is an important drug for the treatment of leukemias. However, hypersensitivity to ASNase can increase the risk of leukemia relapse. Two mechanisms of ASNase hypersensitivity have been identified in mice. The existence of a pathway involving anti-ASNase IgG and Fc-γ receptor III (Fc-γRIII) implies that IgG and ASNase immune complexes (ICs) could directly induce hypersensitivity. The aim of this study was to detect ASNase ICs in mice after hypersensitivity reactions and determine their role in hypersensitivity. Protein G beads were used to detect plasma ASNase ICs by flow cytometry. Anti-ASNase IgG was purified from the plasma of sensitized mice, and ASNase ICs were prepared ex vivo at various ratios of ASNase to anti-ASNase IgG. The levels of ASNase ICs detected after hypersensitivity reactions correlated with reaction severity (R2 = 0.796; P = 0.0005). ASNase ICs prepared ex vivo required high levels of anti-ASNase IgG for formation, and binding to naive and sensitized immune cells depended on soluble anti-ASNase IgG, antigen:antibody ratio, and Fc-γRIII. Similarly, basophil activation by ASNase ICs depended on the antigen:antibody ratio and Fc-γRIII. Consistent with the ex vivo results, naive mice receiving ASNase ICs developed hypersensitivity reactions. Our data demonstrate that ASNase ICs can directly contribute to the onset and severity of ASNase hypersensitivity.-Rathod, S., Ramsey, M., DiGiorgio, D., Berrios, R., Finkelman, F. D., Fernandez, C. A. Asparaginase immune complexes induce Fc-γRIII-dependent hypersensitivity in naive mice.
Assuntos
Antineoplásicos/imunologia , Asparaginase/imunologia , Hipersensibilidade a Drogas/imunologia , Receptores de IgG/imunologia , Animais , Antineoplásicos/efeitos adversos , Asparaginase/efeitos adversos , Células Cultivadas , Hipersensibilidade a Drogas/etiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Asparaginase is an important drug for the treatment of leukemias. However, anti-asparaginase antibodies often develop, which can decrease asparaginase drug levels and increase the risk of relapse. The aim of this study is to identify the immunoglobulin isotypes and receptors responsible for asparaginase hypersensitivities. Mice immunized with asparaginase developed anti-asparaginase IgG1 and IgE antibodies, and challenging the sensitized mice with asparaginase induced severe hypersensitivity reactions. Flow cytometry analysis indicated that macrophages/monocytes, neutrophils, and basophils bind asparaginase ex vivo through FcγRIII. In contrast, asparaginase binding to basophils was dependent on FcγRIII and IgE. Consistent with the asparaginase binding data, basophil activation by asparaginase occurred via both IgG/FcγRIII and IgE/FcεRI. Depleting >95% of B cells suppressed IgG but not IgE-dependent hypersensitivity, while depleting CD4+ T cells provided complete protection. Combined treatment with either anti-IgE mAb plus a platelet-activating factor receptor antagonist or anti-FcγRIII mAb plus a H1 receptor antagonist suppressed asparaginase hypersensitivity. The observations indicate that asparaginase hypersensitivity is mediated by antigen-specific IgG and/or IgE through the immunoglobulin receptors FcγRIII and FcεRI, respectively. Provided that these results apply to humans, they emphasize the importance of monitoring both IgE- and IgG-mediated asparaginase hypersensitivities in patients receiving this agent.
Assuntos
Antineoplásicos/efeitos adversos , Asparaginase/efeitos adversos , Hipersensibilidade a Drogas/imunologia , Hipersensibilidade a Drogas/metabolismo , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Receptores de IgE/metabolismo , Receptores de IgG/metabolismo , Animais , Modelos Animais de Doenças , Hipersensibilidade a Drogas/diagnóstico , Feminino , Imunização , Contagem de Leucócitos , Leucócitos/imunologia , Leucócitos/metabolismo , Camundongos , Ligação Proteica/imunologiaRESUMO
BACKGROUND: Food allergy (FA) is an increasing problem that has no approved treatment. The pro-TH2 cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) are associated with FA, and mAbs to these cytokines are reported to suppress murine FA development. OBJECTIVE: We sought to determine whether anti-pro-TH2 cytokine mAbs can block both FA maintenance and induction. METHODS: IgE-mediated FA was induced in BALB/c mice by oral gavage with medium-chain triglycerides (MCTs) plus egg white (EW) and was characterized by increased numbers of lamina propria TH2 cells, mast cells, and eosinophils, shock (hypothermia), mast cell degranulation (increased serum mouse mast cell protease 1), increased serum IgG1 anti-EW and IgE levels, and increased IL-4 and IL-13 secretion after MCT/EW challenge. Mice were injected with anti-IL-25, IL-33 receptor, and/or TSLP mAbs before initial oral gavage with MCT/EW to suppress FA development; treatment with the same mAbs was initiated after FA development to suppress established FA. RESULTS: Injection of an mAb to IL-25, IL-33 receptor, or TSLP strongly inhibited FA development. No single mAb to a pro-TH2 cytokine could suppress established FA, and optimal FA suppression required treatment with a cocktail of all 3 anti-pro-TH2 mAbs. Treatment with the 3-mAb cocktail during initial MCT/EW immunization induced EW tolerance. CONCLUSION: All of the pro-TH2 cytokines are required to induce our model of FA, whereas any pro-TH2 cytokine can maintain established FA. Pro-TH2 cytokines prevent oral tolerance. Combined treatment with antagonists to all 3 pro-TH2 cytokines or with an inhibitor of pro-TH2 cytokine production might be able to suppress established human FA.
Assuntos
Anticorpos Monoclonais Murinos/farmacologia , Anticorpos Neutralizantes/farmacologia , Citocinas/antagonistas & inibidores , Hipersensibilidade Alimentar , Interleucina-33/antagonistas & inibidores , Interleucinas/antagonistas & inibidores , Células Th2/imunologia , Animais , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Neutralizantes/imunologia , Citocinas/imunologia , Feminino , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade Alimentar/patologia , Hipersensibilidade Alimentar/prevenção & controle , Interleucina-33/imunologia , Interleucinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Células Th2/patologia , Linfopoietina do Estroma do TimoRESUMO
BACKGROUND: The inhibitory receptor FcγRIIB is expressed on human and murine bone marrow-derived cells and limits inflammation by suppressing signaling through stimulatory receptors. OBJECTIVE: We sought to evaluate the effects of K9.361, a mouse IgG2a alloantibody to mouse FcγRIIB, on murine anaphylaxis. METHODS: Wild-type and FcγR-deficient mice were used to study anaphylaxis, which was induced by injection of 2.4G2 (rat IgG2b mAb that binds both FcγRIIB and the stimulatory receptor FcγRIII), by actively immunizing IgE-deficient mice and then challenging with the immunizing antigen, and by passive immunization with IgG or IgE anti-2,4,6-trinitrophenyl mAb, followed by injection of 2,4,6-trinitrophenyl-ovalbumin. Pretreatment with K9.361 was assessed for its ability to influence anaphylaxis. RESULTS: Unexpectedly, K9.361 injection induced mild anaphylaxis, which was both FcγRIIB and FcγRIII dependent and greatly enhanced by ß-adrenergic blockade. K9.361 injection also decreased expression of stimulatory Fcγ receptors, especially FcγRIII, and strongly suppressed IgG-mediated anaphylaxis without strongly affecting IgE-mediated anaphylaxis. The F(ab')2 fragment of K9.361 did not induce anaphylaxis, even after ß-adrenergic blockade, and did not deplete FcγRIII or suppress IgG-mediated anaphylaxis but prevented intact K9.361-induced anaphylaxis without diminishing intact K9.36 suppression of IgG-mediated anaphylaxis. CONCLUSION: Cross-linking FcγRIIB to stimulatory FcγRs through the Fc domains of an anti-FcγRIIB mAb induces and then suppresses IgG-mediated anaphylaxis without affecting IgE-mediated anaphylaxis. Because IgG- and IgE-mediated anaphylaxis can be mediated by the same cell types, this suggests that desensitization acts at the receptor rather than cellular level. Sequential treatment with the F(ab')2 fragment of anti-FcγRIIB mAb followed by intact anti-FcγRIIB safely prevents IgG-mediated anaphylaxis.
Assuntos
Anafilaxia/prevenção & controle , Anticorpos Monoclonais/uso terapêutico , Imunoglobulina G/imunologia , Receptores de IgG/imunologia , Anafilaxia/imunologia , Animais , Anticorpos Monoclonais/efeitos adversos , Feminino , Humanos , Imunoglobulina E/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Resultado do TratamentoRESUMO
BACKGROUND: Histamine is a critical mediator of IgE/mast cell-mediated anaphylaxis. Histamine is synthesized by decarboxylating the amino acid histidine, a reaction catalyzed by the histidine decarboxylase (Hdc) gene-encoded enzyme HDC. However, regulation of the Hdc gene in mast cells is poorly understood. OBJECTIVE: We sought to investigate the in vivo regulation of IgE/mast cell-mediated anaphylaxis by the transcription factors GATA2 and microphthalmia-associated transcription factor (MITF) and the mechanisms by which GATA2 and MITF regulate Hdc gene expression in mouse and human mast cells. METHODS: Mice deficient in the transcription factors Gata2, aryl hydrocarbon receptor (Ahr), aryl hydrocarbon receptor repressor (Ahrr), or basic helix-loop-helix family member E40 (Bhlhe40) were assessed for anaphylactic reactions. Chromatin immunoprecipitation sequencing analysis identified putative Hdc enhancers. Luciferase reporter transcription assay confirmed enhancer activities of putative enhancers in the Hdc gene. The short hairpin RNA knockdown approach was used to determine the role of MITF in regulating mouse and human HDC gene expression. RESULTS: Connective tissue mast cell-specific Gata2-deficient mice did not have IgE/mast cell-mediated anaphylaxis. GATA2 induced the expression of Mitf, Ahr, Ahrr, and Bhlhe40 in mast cells. MITF, but not AHR, AHRR, or BHLHE40, was required for anaphylaxis. MITF bound to an enhancer located 8.8 kb upstream of the transcription start site of the Hdc gene and directed enhancer activity. MITF overexpression largely restored Hdc gene expression in the Gata2-deficient mast cells. In the human mast cell line LAD2, MITF was required for the HDC gene expression and histamine synthesis. CONCLUSION: The transcription factors GATA2 and MITF regulate Hdc gene expression in mast cells and are required for IgE/mast cell-mediated anaphylaxis.
Assuntos
Anafilaxia/genética , Fator de Transcrição GATA2/genética , Regulação da Expressão Gênica , Histidina Descarboxilase/genética , Mastócitos/imunologia , Fator de Transcrição Associado à Microftalmia/genética , Anafilaxia/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Homeodomínio/genética , Imunoglobulina E/imunologia , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética , Proteínas Repressoras/genéticaAssuntos
Citocinas/metabolismo , Homeostase , Imunidade Inata , Influenza Humana/imunologia , Pulmão/metabolismo , Linfócitos/metabolismo , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/imunologia , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Mucosa Respiratória/metabolismo , Rinite/imunologia , Sinusite/imunologia , Animais , HumanosRESUMO
Glomerulonephritis (GN) is a typical lesion in autoantibody and immune complex disorders, including SLE. Because the Gas6/Axl pathway has been implicated in the pathogenesis of many types of GN, targeting this pathway might ameliorate GN. Consequently, we have studied the efficacy and mechanism of R428, a potent selective Axl inhibitor, in the prevention of experimental anti-GBM nephritis. Axl upregulation was investigated with Sp1/3 siRNA in the SV40-transformed mesangial cells. For Axl inhibition, a daily dose of R428 (125â¯mg/kg) or vehicle was administered orally. GN was induced with anti-GBM sera. Renal disease development was followed by serial blood urine nitrogen (BUN) determinations and by evaluation of kidney histology at the time of sacrifice. Axl-associated signaling proteins were analyzed by Western blotting and inflammatory cytokine secretion was analyzed by Proteome array. SiRNA data revealed the transcription factor Sp1 to be an important regulator of mesangial Axl expression. Anti-GBM serum induced severe nephritis with azotemia, protein casts and necrotic cell death. R428 treatment diminished renal Axl expression and improved kidney function, with significantly decreased BUN and glomerular proliferation. R428 treatment inhibited Axl and significantly decreased Akt phosphorylation and renal inflammatory cytokine and chemokine expression; similar effects were observed in anti-GBM antiserum-treated Axl-KO mice. These studies support a role for Axl inhibition in glomerulonephritis.
Assuntos
Benzocicloeptenos/farmacologia , Fatores Imunológicos/farmacologia , Nefrite Lúpica/tratamento farmacológico , Células Mesangiais/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Triazóis/farmacologia , Administração Oral , Animais , Anticorpos/administração & dosagem , Linhagem Celular Transformada , Esquema de Medicação , Regulação da Expressão Gênica , Membrana Basal Glomerular/efeitos dos fármacos , Membrana Basal Glomerular/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Nefrite Lúpica/induzido quimicamente , Nefrite Lúpica/genética , Nefrite Lúpica/imunologia , Células Mesangiais/imunologia , Células Mesangiais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/imunologia , Transdução de Sinais , Fator de Transcrição Sp1/antagonistas & inibidores , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/imunologia , Fator de Transcrição Sp3/antagonistas & inibidores , Fator de Transcrição Sp3/genética , Fator de Transcrição Sp3/imunologia , Receptor Tirosina Quinase AxlRESUMO
IgE contributes to disease exacerbations but not to baseline airway hyperresponsiveness (AHR) in human asthma. In rodent allergic airway disease (AAD), mast cell and IgE dependence for the induction of AHR has only been observed when mice are immunized with a relatively weak allergen without adjuvant. To evaluate the role of IgE in murine AAD that is induced by a potent allergen, we inoculated BALB/c and FVB/N background wild-type and IgE- or FcεRIα-deficient mice intratracheally with large or limiting doses of house dust mite extract (HDM) and evaluated AHR, pulmonary eosinophilia, goblet cell metaplasia, serum IgE, and lung mastocytosis. We found that neither IgE nor FcεRIα contributed to AAD, even in mice inoculated with the lowest dose of HDM, which readily induced detectable disease, but did not increase serum IgE or pulmonary mast cell levels. In contrast, high doses of HDM strikingly increased serum IgE and pulmonary mast cells, although both AHR and airway mast cell degranulation were equally elevated in wild-type and IgE-deficient mice. Surprisingly, allergen challenge of mice with severe AAD and pulmonary mastocytosis failed to acutely increase airway resistance, lung Newtonian resistance, or hysteresis. Overall, this study shows that, although mice may not reliably model acute asthma exacerbations, mechanisms that are IgE and FcεRIα independent are responsible for AHR and airway inflammation when low doses of a potent allergen are inhaled repetitively.
Assuntos
Alérgenos/imunologia , Asma/imunologia , Imunoglobulina E/imunologia , Eosinofilia Pulmonar/imunologia , Pyroglyphidae/imunologia , Receptores de IgE/imunologia , Animais , Asma/genética , Asma/patologia , Células Caliciformes/imunologia , Células Caliciformes/patologia , Humanos , Mastocitose/imunologia , Mastocitose/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Eosinofilia Pulmonar/genética , Receptores de IgE/genéticaRESUMO
IL-4 has been shown to suppress acute graft vs. host disease (GVHD) in irradiated hosts. Here we evaluated whether IL-4 suppresses acute GVHD in the un-irradiated parent-into-F1 GVHD model with relevance to renal allograft rejection. IL-4 completely suppressed CD8 CTL when administered with donor cells however this effect was lost if its administration was delayed 3days. IL-4 did not inhibit donor CD8+ T cell homing to the host spleen but rather prevented donor CD8+ T cell differentiation into CTLs. Studies with IL-4Rα-deficient donor cells or recipient mice demonstrated that IL-4 effects on the host, rather than, or in addition to IL-4 effects on donor cells, were critical for suppression of CTL. Because IL-4 decreased all splenic dendritic cell populations and increased neutrophil and CD8+ T cells, IL-4 may suppress donor CD8+ CTL by decreasing Ag presentation and/or increasing host myeloid and CD8+ T cell suppression of donor T cells.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença Enxerto-Hospedeiro/imunologia , Interleucina-4/imunologia , Isoantígenos/imunologia , Animais , Anticorpos Monoclonais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD8-Positivos/transplante , Doença Enxerto-Hospedeiro/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Virtual memory (VM) CD8+ T cells are present in unimmunized mice, yet possess T-cell receptors specific for foreign antigens. To date, VM cells have only been characterized in C57BL/6 mice. Here, we assessed the cytokine requirements for VM cells in C57BL/6 and BALB/c mice. As reported previously, VM cells in C57BL/6 mice rely mostly on IL-15 and marginally on IL-4. In stark contrast, VM cells in BALB/c mice rely substantially on IL-4 and marginally on IL-15. Further, NKT cells are the likely source of IL-4, because CD1d-deficient mice on a BALB/c background have significantly fewer VM cells. Notably, this NKT/IL-4 axis contributes to appropriate effector and memory T-cell responses to infection in BALB/c mice, but not in C57BL/6 mice. However, the effects of IL-4 are manifest prior to, rather than during, infection. Thus, cytokine-mediated control of the precursor population affects the development of virus-specific CD8+ T-cell memory. Depending upon the genetic background, different cytokines encountered before infection may influence the subsequent ability to mount primary and memory anti-viral CD8+ T-cell responses.