RESUMO
OBJECTIVES: Minimally invasive mitral valve repair (MVR) is considered one of the most challenging operations in cardiac surgery and requires much practice and experience. Simulation-based surgical training might be a method to support the learning process and help to flatten the steep learning curve of novices. The purpose of this study was to show the possible effects on learning of surgical training using a high-fidelity simulator with patient-specific mitral valve replicas. METHODS: Twenty-five participants were recruited to perform MVR on anatomically realistic valve models during different training sessions. After every session their performance was evaluated by a surgical expert regarding accuracy and duration for each step. A second blinded rater similarly assessed the performance after the study. Through repeated documentation of those parameters, their progress in learning was analysed, and gains in proficiency were evaluated. RESULTS: Participants showed significant performance enhancements in terms of both accuracy and time. Their surgical skills showed sizeable improvements after only 1 session. For example, the time to implant neo-chordae decreased by 24.64% (354 s-264 s, P < 0.001) and the time for annuloplasty by 4.01% (54 s-50 s, P = 0.165), whereas the number of irregular stitches for annuloplasty decreased from 52% to 24%.The significance of simulation-based surgical training as a tool for acquiring and training surgical skills was reviewed positively. CONCLUSIONS: The results of this study indicate that simulation-based surgical training is a valuable and effective method for learning reconstructive techniques of minimally invasive MVR and overall general dexterity.The novel learning and training options should be implemented in the surgical traineeship for systematic teaching of various surgical skills.
Assuntos
Procedimentos Cirúrgicos Cardíacos , Implante de Prótese de Valva Cardíaca , Insuficiência da Valva Mitral , Treinamento por Simulação , Humanos , Valva Mitral/cirurgia , Procedimentos Cirúrgicos Cardíacos/métodos , Insuficiência da Valva Mitral/cirurgia , Valva Tricúspide/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Implante de Prótese de Valva Cardíaca/educaçãoRESUMO
Macromolecular protein complexes carry out most functions in the cell including essential functions required for cell survival. Unfortunately, we lack the subunit composition for all human protein complexes. To address this gap we integrated >25,000 mass spectrometry experiments using a machine learning approach to identify > 15,000 human protein complexes. We show our map of protein complexes is highly accurate and more comprehensive than previous maps, placing ~75% of human proteins into their physical contexts. We globally characterize our complexes using protein co-variation data (ProteomeHD.2) and identify co-varying complexes suggesting common functional associations. Our map also generates testable functional hypotheses for 472 uncharacterized proteins which we support using AlphaFold modeling. Additionally, we use AlphaFold modeling to identify 511 mutually exclusive protein pairs in hu.MAP3.0 complexes suggesting complexes serve different functional roles depending on their subunit composition. We identify expression as the primary way cells and organisms relieve the conflict of mutually exclusive subunits. Finally, we import our complexes to EMBL-EBI's Complex Portal (https://www.ebi.ac.uk/complexportal/home) as well as provide complexes through our hu.MAP3.0 web interface (https://humap3.proteincomplexes.org/). We expect our resource to be highly impactful to the broader research community.
RESUMO
Mutations in retinal primary cilia are responsible for human blindness but the mechanisms are not fully understood (Wheway et al., 2014). Characterizing the proteome of an organelle such as cilia, is a fruitful way to understand its function but methods often require considerable sample quantities. Here we develop a method to isolate the primary cilia of photoreceptor cells from bovine retinas. Through LC/MS/MS proteomics analysis we identify proteins enriched for cilia function including ciliopathy disease. This study shows our method can be used to isolate retinal primary cilia to obtain sufficient quantities of native protein samples.
RESUMO
PURPOSE: Minimally invasive mitral valve surgery (MIMVS) and transcatheter edge-to-edge repair (TEER) are complex procedures used to treat mitral valve (MV) pathologies, but with limited training opportunities available. To enable training, a realistic hemodynamic environment is needed. In this work we aimed to develop and validate a simulator that enables investigation of MV pathologies and their repair by MIMVS and TEER in a hemodynamic setting. METHODS: Different MVs were installed in the simulator, and pressure, flow, and transesophageal echocardiographic measurements were obtained. To confirm the simulator's physiological range, we first installed a biological prosthetic, a mechanical prosthetic, and a competent excised porcine MV. Subsequently, we inserted two porcine MVs-one with induced chordae tendineae rupture and the other with a dilated annulus, along with a patient-specific silicone valve extracted from echocardiography with bi-leaflet prolapse. Finally, TEER and MIMVS procedures were conducted by experts to repair the MVs. RESULTS: Systolic pressures, cardiac outputs, and regurgitations volumes (RVol) with competent MVs were 119 ± 1 mmHg, 4.78 ± 0.16 l min-1, and 5 ± 3 ml respectively, and thus within the physiological range. In contrast, the pathological MVs displayed increased RVols. MIMVS and TEER resulted in a decrease in RVols and mitigated the severity of mitral regurgitation. CONCLUSION: Ex-vivo modelling of MV pathologies and repair procedures using the described simulator realistically replicated physiological in-vivo conditions. Furthermore, we showed the feasibility of performing MIMVS and TEER at the simulator, also at patient-specific level, thus providing new clinical perspectives in terms of training modalities and personalized planning.
Assuntos
Procedimentos Cirúrgicos Cardíacos , Implante de Prótese de Valva Cardíaca , Insuficiência da Valva Mitral , Humanos , Suínos , Animais , Valva Mitral/diagnóstico por imagem , Valva Mitral/cirurgia , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/cirurgia , Procedimentos Cirúrgicos Cardíacos/métodos , Ecocardiografia , Ecocardiografia Transesofagiana , Resultado do TratamentoRESUMO
This systematic search and review aims to understand the two-way relationship between gestational diabetes and depression. This study assesses gestational diabetes in relation to a history of depression, depression during pregnancy and postpartum depression. Searches were conducted on PubMed and Scopus. Studies were excluded due to being duplicates, not available, published before 2015 or did not include both gestational diabetes and depression. Of the 915 articles initially identified, 22 articles were included for review. Of the included studies, 18 were cohorts, 2 were case-controls, 1 was cross-sectional and 1 was a claims analysis. A meta-ethnography was conducted, and a bidirectional relationship was observed between a history of depression, depression during pregnancy, postpartum depression and gestational diabetes. Differing methodologies between studies were a limiting factor throughout this review. A two-way relationship between gestational diabetes and depression was observed; the diagnosis of gestational diabetes may lead to an increased risk of depression, both during the pregnancy and in the postpartum period, and a history of depression or symptoms of depression during pregnancy may lead to an increased risk of gestational diabetes.
RESUMO
PURPOSE: The goal of this study was to show possible effects of performing the actual procedure of mitral valve repair (MVR) on personalized silicone models 1 day before operation. DESCRIPTION: Based on preoperative 3-dimensional echocardiography recordings, flexible 3-dimensional replicas of the depicted pathologic mitral valves could be produced and used for a simulation of reconstructive techniques analogous to the upcoming MVR procedure. We integrated this step of personalized surgical planning into the clinical routine of 6 MVR cases with 3 different surgeons. This pilot study was assessed by evaluating questionnaires and by comparing isolated surgical steps with conventional MVRs. EVALUATION: This approach was considered a better preparation for MVRs with overall positive responses from the surgeons. Simulation helped reduce the time of initial inspection of the valve because of better understanding of the valve's pathomorphologic features. Annuloplasty benefited from preoperative sizing by reducing the number of sizing attempts. CONCLUSIONS: These initial findings suggest that simulation-based surgical planning can be implemented into patients' and physicians' clinical workflow as a major technologic advancement for future MVR preparation.
Assuntos
Procedimentos Cirúrgicos Cardíacos , Implante de Prótese de Valva Cardíaca , Anuloplastia da Valva Mitral , Insuficiência da Valva Mitral , Humanos , Valva Mitral/diagnóstico por imagem , Valva Mitral/cirurgia , Insuficiência da Valva Mitral/cirurgia , Projetos Piloto , Procedimentos Cirúrgicos Cardíacos/métodos , Impressão TridimensionalRESUMO
BACKGROUND: Lowland areas in tropical East and Southeast Asia have a long history of conversion from forestland to agricultural land, with many remaining forests being chronically degraded by wood cutting, livestock grazing, and burning. Wetland-breeding amphibians that have evolved in lowland forests in the region have adjusted to changes in habitat composition caused by humans' activities, and populations continue to persist. However, we have little understanding of the impacts of forest disturbance on these species beyond assessments of abundance and distribution, and species considered to be common and widespread have been largely neglected. METHODS: We examined body condition and sex ratios of toads (Duttaphrynus melanostictus), predation risk in treefrogs (2 Polypedates spp.), and growth and survival of leaf litter frogs (2 Microhyla spp.) in agricultural land, degraded forest, and intact forest in two study areas, Thailand and Hong Kong. RESULTS: Toad populations exhibited higher body condition and female-biased sex ratios in intact forest. Predation of treefrog embryos by flies was lower in intact and degraded forests than in agricultural land. Embryonic survival and larval growth and survival in leaf litter frogs were lower in intact forests than in agricultural land. Results for each study were similar between study areas. DISCUSSION: For three of five of these common amphibian species, we documented signals of forest loss and disturbance in their populations. Although these species occur in disturbed habitats, loss of forest cover continues to degrade aspects of their population demography. We urge conservation biologists to consider that populations of species appearing to be common, widespread, and tolerant of human disturbance may be eroding over time.