Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Strahlenther Onkol ; 194(11): 1030-1038, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30022277

RESUMO

For patients with inoperable liver metastases, intra-operative liver high dose-rate brachytherapy (HDR-BT) is a promising technology enabling delivery of a high radiation dose to the tumor, while sparing healthy tissue. Liver brachytherapy has been described in the literature as safe and effective for the treatment of primary or secondary hepatic malignancies. It is preferred over other ablative techniques for lesions that are either larger than 4 cm or located in close proximity to large vessels or the common bile duct. In contrast to external beam radiation techniques, organ movements do not affect the size of the irradiated volume in intra-operative HDR-BT and new technical solutions exist to support image guidance for intra-operative HDR-BT. We have retrospectively analyzed anonymized CT datasets of 5 patients who underwent open liver surgery (resection and/or ablation) in order to test whether the accuracy of a new image-guidance method specifically adapted for intra-operative HDR-BT is high enough to use it in similar situations and whether patients could potentially benefit from navigation-guided intra-operative needle placement for liver HDR-BT.


Assuntos
Braquiterapia/métodos , Período Intraoperatório , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/métodos , Braquiterapia/instrumentação , Terapia Combinada , Estudos de Viabilidade , Marcadores Fiduciais , Humanos , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/instrumentação , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
2.
Phys Med Biol ; 68(4)2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36716491

RESUMO

Objective.Presently electron beam treatments are delivered using dedicated applicators. An alternative is the usage of the already installed photon multileaf collimator (pMLC) enabling efficient electron treatments. Currently, the commissioning of beam models is a manual and time-consuming process. In this work an auto-commissioning procedure for the Monte Carlo (MC) beam model part representing the beam above the pMLC is developed for TrueBeam systems with electron energies from 6 to 22 MeV.Approach.The analytical part of the electron beam model includes a main source representing the primary beam and a jaw source representing the head scatter contribution each consisting of an electron and a photon component, while MC radiation transport is performed for the pMLC. The auto-commissioning of this analytical part relies on information pre-determined from MC simulations, in-air dose profiles and absolute dose measurements in water for different field sizes and source to surface distances (SSDs). For validation calculated and measured dose distributions in water were compared for different field sizes, SSDs and beam energies for eight TrueBeam systems. Furthermore, a sternum case in an anthropomorphic phantom was considered and calculated and measured dose distributions were compared at different SSDs.Main results.Instead of the manual commissioning taking up to several days of calculation time and several hours of user time, the auto-commissioning is carried out in a few minutes. Measured and calculated dose distributions agree generally within 3% of maximum dose or 2 mm. The gamma passing rates for the sternum case ranged from 96% to 99% (3% (global)/2 mm criteria, 10% threshold).Significance.The auto-commissioning procedure was successfully implemented and applied to eight TrueBeam systems. The newly developed user-friendly auto-commissioning procedure allows an efficient commissioning of an MC electron beam model and eases the usage of advanced electron radiotherapy utilizing the pMLC for beam shaping.


Assuntos
Elétrons , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Imagens de Fantasmas , Método de Monte Carlo , Água
3.
Phys Med Biol ; 68(4)2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36655485

RESUMO

Objective.The computational effort to perform beamlet calculation, plan optimization and final dose calculation of a treatment planning process (TPP) generating intensity modulated treatment plans is enormous, especially if Monte Carlo (MC) simulations are used for dose calculation. The goal of this work is to improve the computational efficiency of a fully MC based TPP for static and dynamic photon, electron and mixed photon-electron treatment techniques by implementing multiple methods and studying the influence of their parameters.Approach.A framework is implemented calculating MC beamlets efficiently in parallel on each available CPU core. The user can specify the desired statistical uncertainty of the beamlets, a fractional sparse dose threshold to save beamlets in a sparse format and minimal distances to the PTV surface from which 2 × 2 × 2 = 8 (medium) or even 4 × 4 × 4 = 64 (large) voxels are merged. The compromise between final plan quality and computational efficiency of beamlet calculation and optimization is studied for several parameter values to find a reasonable trade-off. For this purpose, four clinical and one academic case are considered with different treatment techniques.Main results.Setting the statistical uncertainty to 5% (photon beamlets) and 15% (electron beamlets), the fractional sparse dose threshold relative to the maximal beamlet dose to 0.1% and minimal distances for medium and large voxels to the PTV to 1 cm and 2 cm, respectively, does not lead to substantial degradation in final plan quality compared to using 2.5% (photon beamlets) and 5% (electron beamlets) statistical uncertainty and no sparse format nor voxel merging. Only OAR sparing is slightly degraded. Furthermore, computation times are reduced by about 58% (photon beamlets), 88% (electron beamlets) and 96% (optimization).Significance.Several methods are implemented improving computational efficiency of beamlet calculation and plan optimization of a fully MC based TPP without substantial degradation in final plan quality.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Fótons/uso terapêutico , Método de Monte Carlo
4.
Phys Med Biol ; 67(7)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35213843

RESUMO

The purpose of this work was to develop a hybrid column generation (CG) and simulated annealing (SA) algorithm for direct aperture optimization (H-DAO) and to show its effectiveness in generating high quality treatment plans for intensity modulated radiation therapy (IMRT) and mixed photon-electron beam radiotherapy (MBRT). The H-DAO overcomes limitations of the CG-DAO with two features improving aperture selection (branch-feature) and enabling aperture shape changes during optimization (SA-feature). The H-DAO algorithm iteratively adds apertures to the plan. At each iteration, a branch is created for each field provided. First, each branch determines the most promising aperture of its assigned field and adds it to a copy of the current apertures. Afterwards, the apertures of each branch undergo an MU-weight optimization followed by an SA-based simultaneous shape and MU-weight optimization and a second MU-weight optimization. The next H-DAO iteration continues the branch with the lowest objective function value. IMRT and MBRT treatment plans for an academic, a brain and a head and neck case generated using the CG-DAO and H-DAO were compared. For every investigated case and both IMRT and MBRT, the H-DAO leads to a faster convergence of the objective function value with number of apertures compared to the CG-DAO. In particular, the H-DAO needs about half the apertures to reach the same objective function value as the CG-DAO. The average aperture areas are 27% smaller for H-DAO than for CG-DAO leading to a slightly larger discrepancy between optimized and final dose. However, a dosimetric benefit remains. The H-DAO was successfully developed and applied to IMRT and MBRT. The faster convergence with number of apertures of the H-DAO compared to the CG-DAO allows to select a better compromise between plan quality and number of apertures.


Assuntos
Algoritmos , Radioterapia de Intensidade Modulada , Encéfalo , Elétrons , Cabeça
5.
Phys Med Biol ; 67(17)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35878610

RESUMO

Objective.The purpose of this study is to develop a treatment planning process (TPP) for non-isocentric dynamic trajectory radiotherapy (DTRT) using dynamic gantry rotation, collimator rotation, table rotation, longitudinal, vertical and lateral table translations and intensity modulation and to validate the dosimetric accuracy.Approach.The TPP consists of two steps. First, a path describing the dynamic gantry rotation, collimator rotation and dynamic table rotation and translations is determined. Second, an optimization of the intensity modulation along the path is performed. We demonstrate the TPP for three use cases. First, a non-isocentric DTRT plan for a brain case is compared to an isocentric DTRT plan in terms of dosimetric plan quality and delivery time. Second, a non-isocentric DTRT plan for a craniospinal irradiation (CSI) case is compared to a multi-isocentric intensity modulated radiotherapy (IMRT) plan. Third, a non-isocentric DTRT plan for a bilateral breast case is compared to a multi-isocentric volumetric modulated arc therapy (VMAT) plan. The non-isocentric DTRT plans are delivered on a TrueBeam in developer mode and their dosimetric accuracy is validated using radiochromic films.Main results.The non-isocentric DTRT plan for the brain case is similar in dosimetric plan quality and delivery time to the isocentric DTRT plan but is expected to reduce the risk of collisions. The DTRT plan for the CSI case shows similar dosimetric plan quality while reducing the delivery time by 45% in comparison with the IMRT plan. The DTRT plan for the breast case showed better treatment plan quality in comparison with the VMAT plan. The gamma passing rates between the measured and calculated dose distributions are higher than 95% for all three plans.Significance.The versatile benefits of non-isocentric DTRT are demonstrated with three use cases, namely reduction of collision risk, reduced setup and delivery time and improved dosimetric plan quality.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
6.
Med Phys ; 38(9): 5254-63, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21978069

RESUMO

PURPOSE: The purpose of this investigation was to study the source characteristics of a clinical kilo-voltage cone beam CT unit and to develop and validate a virtual source model that could be used for treatment planning purposes. METHODS: We used a previously commissioned full Monte Carlo model and new bespoke software to study the source characteristics of a clinical kilo-voltage cone beam CT (CBCT) unit. We identified the main particle sources, their spatial, energy and angular distribution for all the image acquisition presets currently used in our clinical practice. This includes a combination of two energies (100 and 120 kVp), two filters (neutral and bowtie), and eight different x-ray beam apertures. We subsequently built a virtual source model which we validated against full Monte Carlo calculations. RESULTS: We found that the radiation output of the clinical kilo-voltage cone beam CT unit investigated in this study could be reproduced with a virtual model comprising of two sources (target and filtration cone) or three sources (target, filtration cone and bowtie filter) when additional filtration was used. With this model, we accounted for more than 97% of the photons exiting the unit. Each source in our model was characterised by a origin distribution in both X and Y directions, a fluence map, a single energy spectrum for unfiltered beams and a two dimensional energy spectrum for bowtie filtered beams. The percentage dose difference between full Monte Carlo and virtual source model based dose distributions was well within the statistical uncertainty associated with the calculations ( ± 2%, one standard deviation) in all cases studied. CONCLUSIONS: The virtual source that we developed is accurate in calculating the dose delivered from a commercial kilo-voltage cone beam CT unit operating with routine clinical image acquisition settings. Our data have also shown that target, filtration cone, and bowtie filter sources needed to be all included in the model in order to accurately replicate the dose distribution from the clinical radiation beam.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Modelos Teóricos , Interface Usuário-Computador , Humanos , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes
7.
Phys Med Biol ; 66(4): 045006, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32413883

RESUMO

PURPOSE: To develop a novel treatment planning process (TPP) with simultaneous optimization of modulated photon, electron and proton beams for improved treatment plan quality in radiotherapy. METHODS: A framework for fluence map optimization of Monte Carlo (MC) calculated beamlet dose distributions is developed to generate treatment plans consisting of photon, electron and spot scanning proton fields. Initially, in-house intensity modulated proton therapy (IMPT) plans are compared to proton plans created by a commercial treatment planning system (TPS). A triple beam radiotherapy (TriB-RT) plan is generated for an exemplary academic case and the dose contributions of the three particle types are investigated. To investigate the dosimetric potential, a TriB-RT plan is compared to an in-house IMPT plan for two clinically motivated cases. Benefits of TriB-RT for a fixed proton beam line with a single proton field are investigated. RESULTS: In-house optimized IMPT are of at least equal or better quality than TPS-generated proton plans, and MC-based optimization shows dosimetric advantages for inhomogeneous situations. Concerning TriB-RT, for the academic case, the resulting plan shows substantial contribution of all particle types. For the clinically motivated case, improved sparing of organs at risk close to the target volume is achieved compared to IMPT (e.g. myelon and brainstem [Formula: see text] -37%) at cost of an increased low dose bath (healthy tissue V 10% +22%). In the scenario of a fixed proton beam line, TriB-RT plans are able to compensate the loss in degrees of freedom to substantially improve plan quality compared to a single field proton plan. CONCLUSION: A novel TPP which simultaneously optimizes photon, electron and proton beams was successfully developed. TriB-RT shows the potential for improved treatment plan quality and is especially promising for cost-effective single-room proton solutions with a fixed beamline in combination with a conventional linac delivering photon and electron fields.


Assuntos
Elétrons , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias Pélvicas/radioterapia , Imagens de Fantasmas , Fótons/uso terapêutico , Terapia com Prótons/normas , Planejamento da Radioterapia Assistida por Computador/normas , Humanos , Método de Monte Carlo , Terapia com Prótons/métodos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/normas
8.
Med Phys ; 37(2): 492-504, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20229858

RESUMO

PURPOSE: The aim of this work was a Monte Carlo (MC) based investigation of the impact of different radiation transport methods in collimators of a linear accelerator on photon beam characteristics, dose distributions, and efficiency. Thereby it is investigated if it is possible to use different simplifications in the radiation transport for some clinical situations in order to save calculation time. METHODS: Within the Swiss Monte Carlo Plan, a GUI-based framework for photon MC treatment planning, different MC methods are available for the radiation transport through the collimators [secondary jaws and multileaf collimator (MLC)]: EGSnrc (reference), VMC++, and Pin (an in-house developed MC code). Additional nonfull transport methods were implemented in order to provide different complexity levels for the MC simulation: Considering collimator attenuation only, considering Compton scatter only or just the firstCompton process, and considering the collimators as totally absorbing. Furthermore, either a simple or an exact geometry of the collimators can be selected for the absorbing or attenuation method. Phasespaces directly above and dose distributions in a water phantom are analyzed for academic and clinical treatment fields using 6 and 15 MV beams, including intensity modulated radiation therapy with dynamic MLC. RESULTS: For all MC transport methods, differences in the radial mean energy and radial energy fluence are within 1% inside the geometric field. Below the collimators, the energy fluence is underestimated for nonfull MC transport methods ranging from 5% for Compton to 100% for Absorbing. Gamma analysis using EGSnrc calculated doses as reference shows that the percentage of voxels fulfilling a 1% /1 mm criterion is at least 98% when using VMC++, Compton, or firstCompton transport methods. When using the methods Pin, Transmission, Flat-Transmission, Flat-Absorbing or Absorbing, the mean value of points fulfilling this criterion over all tested cases is 97%, 88%, 74%, 68%, or 65%, respectively. However, compared to EGSnrc calculations, the gain in efficiency is a factor of up to 10 for VMC++ and up to 48 for the absorbing method. CONCLUSIONS: The results of this investigation suggest that it is an option to use a simple transport technique in the initial treatment planning process and use more accurate transport methods for the final dose calculation accepting longer calculation times.


Assuntos
Algoritmos , Modelos Biológicos , Método de Monte Carlo , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Simulação por Computador , Relação Dose-Resposta à Radiação , Humanos , Modelos Estatísticos , Fótons/uso terapêutico , Dosagem Radioterapêutica , Software
9.
Med Phys ; 37(8): 4424-31, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20879601

RESUMO

PURPOSE: In 2008, a national intensity modulated radiation therapy (IMRT) dosimetry intercomparison was carried out for all 23 radiation oncology institutions in Switzerland. It was the aim to check the treatment chain focused on the planning, dose calculation, and irradiation process. METHODS: A thorax phantom with inhomogeneities was used, in which thermoluminescence dosimeter (TLD) and ionization chamber measurements were performed. Additionally, absolute dosimetry of the applied beams has been checked. Altogether, 30 plan-measurement combinations have been used in the comparison study. The results have been grouped according to dose calculation algorithms, classified as "type a" or "type b," as proposed by Kntis et al. ["Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations," Phys. Med. Biol. 51, 5785-5807 (2006)]. RESULTS: Absolute dosimetry check under standard conditions: The mean ratio between the dose derived from the single field measurement and the stated dose, calculated with the treatment planning system, was 1.007 +/- 0.010 for the ionization chamber and 1.002 +/- 0.014 (mean+/- standard deviation) for the TLD measurements. IMRT Plan Check: In the lung tissue of the planning target volume, a significantly better agreement between measurements (TLD, ionization chamber) and calculations is shown for type b algorithms than for type a (p <0.001). In regions outside the lungs, the absolute differences between TLD measured and stated dose values, relative to the prescribed dose, [(Dm-Ds)/Dprescribed], are 1.9 +/- 0.4% and 1.4 +/- 0.3%, respectively. These data show the same degree of accuracy between the two algorithm types if low-density medium is not present. CONCLUSIONS: The results demonstrate that the performed intercomparison is feasible and confirm the calculation accuracies of type a and type b algorithms in a water equivalent and low-density environment. It is now planned to offer the intercomparison on a regular basis to all Swiss institutions using IMRT techniques.


Assuntos
Radiometria/instrumentação , Radiometria/normas , Radioterapia Conformacional/normas , Tórax , Análise de Falha de Equipamento , Humanos , Imagens de Fantasmas , Radiometria/métodos , Dosagem Radioterapêutica , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suíça
10.
Med Phys ; 47(12): 6519-6530, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33075168

RESUMO

MOTIVATION: Progress in the field of magnetic resonance (MR)-guided radiotherapy has triggered the need for fast and accurate dose calculation in presence of magnetic fields. The aim of this work is to satisfy this need by extending the macro Monte Carlo (MMC) method to enable dose calculation for photon, electron, and proton beams in a magnetic field. METHODS: The MMC method is based on the transport of particles in macroscopic steps through an absorber by sampling the relevant physical quantities from a precalculated database containing probability distribution functions. To enable MMC particle transport in a magnetic field, a transformation accounting for the Lorentz force is applied for each macro step by rotating the sampled position and direction around the magnetic field vector. The transformed position and direction distributions on local geometries are validated against full MC for electron and proton pencil beams. To enable photon dose calculation, an in-house MC algorithm is used for photon transport and interaction. Emerging secondary charged particles are passed to MMC for transport and energy deposition. The extended MMC dose calculation accuracy and efficiency is assessed by comparison with EGSnrc (photon and electron beams) and Geant4 (proton beam) calculated dose distributions of different energies and homogeneous magnetic fields for broad beams impinging on water phantoms with bone and lung inhomogeneities. RESULTS: The geometric transformation on the local geometries is able to reproduce the results of full MC for all investigated settings (difference in mean value and standard deviation <1%). Macro Monte Carlo calculated dose distributions in a homogeneous magnetic field are in agreement with EGSnrc and Geant4, respectively, with gamma passing rates >99.6% (global 2%, 2 mm and 10% threshold criteria) for all situations. MMC achieves a substantial efficiency gain of up to a factor of 21 (photon beam), 66 (electron beam), and 356 (proton beam) compared to EGSnrc or Geant4. CONCLUSION: Efficient and accurate dose calculation in magnetic fields was successfully enabled by utilizing the developed extended MMC transport method for photon, electron, and proton beams.


Assuntos
Radioterapia Guiada por Imagem , Algoritmos , Campos Magnéticos , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
11.
Phys Med ; 78: 83-92, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32950017

RESUMO

PURPOSE: In the current era of MRI-linac radiotherapy, dose optimization with arbitrary dose distributions is a reality. For the first time, we present new and targeted experiments and modeling to aid in evaluating the potential dose improvements offered with an electron beam mode during MRI-linac radiotherapy. METHODS: Small collimated (1 cm diameter and 1.5 × 1.5 cm2 square) electron beams (6, 12 and 20 MeV) from a clinical linear accelerator (Varian Clinac 2100C) are incident perpendicular and parallel to the strong and localized magnetic fields (0-0.7 T) generated by a permanent magnet device. Gafchromic EBT3 film is placed inside a slab phantom to measure two-dimensional dose distributions. A benchmarked and comprehensive Monte Carlo model (Geant4) is established to directly compare with experiments. RESULTS: With perpendicular fields a 5% narrowing of the beam FWHM and a 10 mm reduction in the 15% isodose penetration is seen for the 20 MeV beam. In the inline setup the penumbral width is reduced by up to 20%, and a local central dose enhancement of 100% is observed. Monte Carlo simulations are in agreement with the measured dose distributions (2% or 2 mm). CONCLUSION: A new range of experiments have been performed to offer insight into how an electron beam mode could offer additional choices in MRI-linac radiotherapy. The work extends on historic studies to bring a successful unified experimental and Monte Carlo modeling approach for studying small field electron beam dosimetry inside magnetic fields. The results suggest further work, particularly on the inline magnetic field scenario.


Assuntos
Elétrons , Campos Magnéticos , Imageamento por Ressonância Magnética , Método de Monte Carlo , Aceleradores de Partículas
12.
Radiat Oncol ; 14(1): 172, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533746

RESUMO

BACKGROUND: Vendor-independent Monte Carlo (MC) dose calculation (IDC) for patient-specific quality assurance of multi-leaf collimator (MLC) based CyberKnife treatments is used to benchmark and validate the commercial MC dose calculation engine for MLC based treatments built into the CyberKnife treatment planning system (Precision MC). METHODS: The benchmark included dose profiles in water in 15 mm depth and depth dose curves of rectangular MLC shaped fields ranging from 7.6 mm × 7.7 mm to 115.0 mm × 100.1 mm, which were compared between IDC, Precision MC and measurements in terms of dose difference and distance to agreement. Dose distributions of three phantom cases and seven clinical lung cases were calculated using both IDC and Precision MC. The lung PTVs ranged from 14 cm3 to 93 cm3. Quantitative comparison of these dose distributions was performed using dose-volume parameters and 3D gamma analysis with 2% global dose difference and 1 mm distance criteria and a global 10% dose threshold. Time to calculate dose distributions was recorded and efficiency was assessed. RESULTS: Absolute dose profiles in 15 mm depth in water showed agreement between Precision MC and IDC within 3.1% or 1 mm. Depth dose curves agreed within 2.3% / 1 mm. For the phantom and clinical lung cases, mean PTV doses differed from - 1.0 to + 2.3% between IDC and Precision MC and gamma passing rates were > =98.1% for all multiple beam treatment plans. For the lung cases, lung V20 agreed within ±1.5%. Calculation times ranged from 2.2 min (for 39 cm3 PTV at 1.0 × 1.0 × 2.5 mm3 native CT resolution) to 8.1 min (93 cm3 at 1.1 × 1.1 × 1.0 mm3), at 2% uncertainty for Precision MC for the 7 examined lung cases and 4-6 h for IDC, which, however, is not optimized for efficiency but used as a gold standard for accuracy. CONCLUSIONS: Both accuracy and efficiency of Precision MC in the context of MLC based planning for the CyberKnife M6 system were benchmarked against MC based IDC framework. Precision MC is used in clinical practice at our institute.


Assuntos
Algoritmos , Neoplasias Pulmonares/cirurgia , Método de Monte Carlo , Imagens de Fantasmas , Neoplasias da Próstata/cirurgia , Radiocirurgia/instrumentação , Radiocirurgia/métodos , Benchmarking , Humanos , Neoplasias Pulmonares/patologia , Masculino , Órgãos em Risco/efeitos da radiação , Prognóstico , Neoplasias da Próstata/patologia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
13.
Med Phys ; 35(4): 1521-31, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18491547

RESUMO

BEAMnrc, a code for simulating medical linear accelerators based on EGSnrc, has been bench-marked and used extensively in the scientific literature and is therefore often considered to be the gold standard for Monte Carlo simulations for radiotherapy applications. However, its long computation times make it too slow for the clinical routine and often even for research purposes without a large investment in computing resources. VMC++ is a much faster code thanks to the intensive use of variance reduction techniques and a much faster implementation of the condensed history technique for charged particle transport. A research version of this code is also capable of simulating the full head of linear accelerators operated in photon mode (excluding multileaf collimators, hard and dynamic wedges). In this work, a validation of the full head simulation at 6 and 18 MV is performed, simulating with VMC++ and BEAMnrc the addition of one head component at a time and comparing the resulting phase space files. For the comparison, photon and electron fluence, photon energy fluence, mean energy, and photon spectra are considered. The largest absolute differences are found in the energy fluences. For all the simulations of the different head components, a very good agreement (differences in energy fluences between VMC++ and BEAMnrc <1%) is obtained. Only a particular case at 6 MV shows a somewhat larger energy fluence difference of 1.4%. Dosimetrically, these phase space differences imply an agreement between both codes at the <1% level, making VMC++ head module suitable for full head simulations with considerable gain in efficiency and without loss of accuracy.


Assuntos
Algoritmos , Método de Monte Carlo , Aceleradores de Partículas , Fótons/uso terapêutico , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Validação de Programas de Computador , Software , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Phys Med ; 53: 17-24, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30241750

RESUMO

The impact of several physical quantities on the spatial resolution of an X-ray scintillating pixel detector for a micro cone beam CT (µCBCT) is investigated and discussed. The XtremeCT from SCANCO Medical AG was simulated using the EGSnrc/EGS++ Monte Carlo (MC) framework and extensively benchmarked in a previous work. The resolution of the detector was determined by simulating a titanium knife-edge to obtain the edge spread function (ESF) and the modulation transfer function (MTF). Propagation of the scintillation light through the scintillator and its coupling into the fiber optics system was taken into account. The contribution of particles scattered in the main scanner components to the detector signal is very low and does not affect the spatial resolution of the detector. The resolution obtained from the energy deposition in the scintillator without any blurring due to the propagation of the scintillation light into the fiber optics array was 31 µm. By assuming isotropic light propagation in the scintillator, the resolution degraded to 360 µm. A simple light propagation model taking into account the impact of the scintillator's columnar microstructures was developed and compared with the MANTIS Monte Carlo simulation package. By reducing the width of the model's light propagation kernel by a factor of 2 compared to the isotropic case, the detector resolution can be improved to 83 µm, which corresponds well to the measured resolution of 86 µm. The resolution of the detector is limited mainly by the propagation of the scintillation light through the scintillator layer. It offers the greatest potential to improve the resolution of the µCBCT imaging system.


Assuntos
Tomografia Computadorizada de Feixe Cônico/instrumentação , Método de Monte Carlo , Contagem de Cintilação/instrumentação , Luz
15.
Phys Med Biol ; 63(2): 025017, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29214984

RESUMO

Standard electron treatments are currently still performed using standard or molded patient-specific cut-outs placed in the electron applicator. Replacing cut-outs and electron applicators with a photon multileaf collimator (pMLC) for electron beam collimation would make standard electron treatments more efficient and would facilitate advanced treatment techniques like modulated electron radiotherapy (MERT) and mixed beam radiotherapy (MBRT). In this work, a multiple source Monte Carlo beam model for pMLC shaped electron beams commissioned at a source-to-surface distance (SSD) of 70 cm is extended for SSDs of up to 100 cm and validated for several Varian treatment units with field sizes typically used for standard electron treatments. Measurements and dose calculations agree generally within 3% of the maximal dose or 2 mm distance to agreement. To evaluate the dosimetric consequences of using pMLC collimated electron beams for standard electron treatments, pMLC-based and cut-out-based treatment plans are created for a left and a right breast boost, a sternum, a testis and a parotid gland case. The treatment plans consist of a single electron field, either alone (1E) or in combination with two 3D conformal tangential photon fields (1E2X). For each case, a pMLC plan with similar treatment plan quality in terms of dose homogeneity to the target and absolute mean dose values to the organs at risk (OARs) compared to a cut-out plan is found. The absolute mean dose to an OAR is slightly increased for pMLC-based compared to cut-out-based 1E plans if the OAR is located laterally close to the target with respect to beam direction, or if a 6 MeV electron beam is used at an extended SSD. In conclusion, treatment plans using cut-out collimation can be replaced by plans of similar treatment plan quality using pMLC collimation with accurately calculated dose distributions.


Assuntos
Elétrons , Método de Monte Carlo , Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Fótons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Radiometria/métodos , Dosagem Radioterapêutica
16.
Med Phys ; 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29992574

RESUMO

PURPOSE: The purpose of this study was to develop a treatment technique for dynamic mixed beam radiotherapy (DYMBER) utilizing increased degrees of freedom (DoF) of a conventional treatment unit including different particle types (photons and electrons), intensity and energy modulation and dynamic gantry, table, and collimator rotations. METHODS: A treatment planning process has been developed to create DYMBER plans combining photon dynamic trajectories (DTs) and step and shoot electron apertures collimated with the photon multileaf collimator (pMLC). A gantry-table path is determined for the photon DTs with minimized overlap of the organs at risk (OARs) with the target. In addition, an associated dynamic collimator rotation is established with minimized area between the pMLC leaves and the target contour. pMLC sequences of photon DTs and electron pMLC apertures are then simultaneously optimized using direct aperture optimization (DAO). Subsequently, the final dose distribution of the electron pMLC apertures is calculated using the Swiss Monte Carlo Plan (SMCP). The pMLC sequences of the photon DTs are then re-optimized with a finer control point resolution and with the final electron dose distribution taken into account. Afterwards, the final photon dose distribution is calculated also using the SMCP and summed together with the one of the electrons. This process is applied for a brain and two head and neck cases. The resulting DYMBER dose distributions are compared to those of dynamic trajectory radiotherapy (DTRT) plans consisting only of photon DTs and clinically applied VMAT plans. Furthermore, the deliverability of the DYMBER plans is verified in terms of dosimetric accuracy, delivery time and collision avoidance. For this purpose, The DYMBER plans are delivered to Gafchromic EBT3 films placed in an anthropomorphic head phantom on a Varian TrueBeam linear accelerator. RESULTS: For each case, the dose homogeneity in the target is similar or better for DYMBER compared to DTRT and VMAT. Averaged over all three cases, the mean dose to the parallel OARs is 16% and 28% lower, D2% to the serial OARs is 17% and 37% lower and V10% to normal tissue is 12% and 4% lower for the DYMBER plans compared to the DTRT and VMAT plans, respectively. The DYMBER plans are delivered without collision and with a 4-5 min longer delivery time than the VMAT plans. The absolute dose measurements are compared to calculation by gamma analysis using 2% (global)/2 mm criteria with passing rates of at least 99%. CONCLUSIONS: A treatment technique for DYMBER has been successfully developed and verified for its deliverability. The dosimetric superiority of DYMBER over DTRT and VMAT indicates utilizing increased DoF to be the key to improve brain and head and neck radiation treatments in future.

17.
Med Phys ; 34(9): 3674-87, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17926971

RESUMO

The aim of this work is to investigate to what extent it is possible to use the secondary collimator jaws to reduce the transmitted radiation through the multileaf collimator (MLC) during an intensity modulated radiation therapy (IMRT). A method is developed and introduced where the jaws follow the open window of the MLC dynamically (dJAW method). With the aid of three academic cases (Closed MLC, Sliding-gap, and Chair) and two clinical cases (prostate and head and neck) the feasibility of the dJAW method and the influence of this method on the applied dose distributions are investigated. For this purpose the treatment planning system Eclipse and the Research-Toolbox were used as well as measurements within a solid water phantom were performed. The transmitted radiation through the closed MLC leads to an inhomogeneous dose distribution. In this case, the measured dose within a plane perpendicular to the central axis differs up to 40% (referring to the maximum dose within this plane) for 6 and 15 MV. The calculated dose with Eclipse is clearly more homogeneous. For the Sliding-gap case this difference is still up to 9%. Among other things, these differences depend on the depth of the measurement within the solid water phantom and on the application method. In the Chair case, the dose in regions where no dose is desired is locally reduced by up to 50% using the dJAW method instead of the conventional method. The dose inside the chair-shaped region decreased up to 4% if the same number of monitor units (MU) as for the conventional method was applied. The undesired dose in the volume body minus the planning target volume in the clinical cases prostate and head and neck decreased up to 1.8% and 1.5%, while the number of the applied MU increased up to 3.1% and 2.8%, respectively. The new dJAW method has the potential to enhance the optimization of the conventional IMRT to a further step.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/instrumentação , Humanos , Masculino , Planejamento da Radioterapia Assistida por Computador/métodos
18.
Phys Med Biol ; 62(14): 5840-5860, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28467321

RESUMO

The aim of this work is to develop and investigate an inverse treatment planning process (TPP) for mixed beam radiotherapy (MBRT) capable of performing simultaneous optimization of photon and electron apertures. A simulated annealing based direct aperture optimization (DAO) is implemented to perform simultaneous optimization of photon and electron apertures, both shaped with the photon multileaf collimator (pMLC). Validated beam models are used as input for Monte Carlo dose calculations. Consideration of photon pMLC transmission during DAO and a weight re-optimization of the apertures after deliverable dose calculation are utilized to efficiently reduce the differences between optimized and deliverable dose distributions. The TPP for MBRT is evaluated for an academic situation with a superficial and an enlarged PTV in the depth, a left chest wall case including the internal mammary chain and a squamous cell carcinoma case. Deliverable dose distributions of MBRT plans are compared to those of modulated electron radiotherapy (MERT), photon IMRT and if available to those of clinical VMAT plans. The generated MBRT plans dosimetrically outperform the MERT, photon IMRT and VMAT plans for all investigated situations. For the clinical cases of the left chest wall and the squamous cell carcinoma, the MBRT plans cover the PTV similarly or more homogeneously than the VMAT plans, while OARs are spared considerably better with average reductions of the mean dose to parallel OARs and D 2% to serial OARs by 54% and 26%, respectively. Moreover, the low dose bath expressed as V 10% to normal tissue is substantially reduced by up to 45% compared to the VMAT plans. A TPP for MBRT including simultaneous optimization is successfully implemented and the dosimetric superiority of MBRT plans over MERT, photon IMRT and VMAT plans is demonstrated for academic and clinical situations including superficial targets with and without deep-seated part.


Assuntos
Elétrons , Fótons/uso terapêutico , Radioterapia de Intensidade Modulada/métodos , Humanos , Método de Monte Carlo , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Fatores de Tempo
19.
Phys Med Biol ; 63(1): 015015, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29256450

RESUMO

This work aims to develop, implement and validate a Monte Carlo (MC)-based independent dose calculation (IDC) framework to perform patient-specific quality assurance (QA) for multi-leaf collimator (MLC)-based CyberKnife® (Accuray Inc., Sunnyvale, CA) treatment plans. The IDC framework uses an XML-format treatment plan as exported from the treatment planning system (TPS) and DICOM format patient CT data, an MC beam model using phase spaces, CyberKnife MLC beam modifier transport using the EGS++ class library, a beam sampling and coordinate transformation engine and dose scoring using DOSXYZnrc. The framework is validated against dose profiles and depth dose curves of single beams with varying field sizes in a water tank in units of cGy/Monitor Unit and against a 2D dose distribution of a full prostate treatment plan measured with Gafchromic EBT3 (Ashland Advanced Materials, Bridgewater, NJ) film in a homogeneous water-equivalent slab phantom. The film measurement is compared to IDC results by gamma analysis using 2% (global)/2 mm criteria. Further, the dose distribution of the clinical treatment plan in the patient CT is compared to TPS calculation by gamma analysis using the same criteria. Dose profiles from IDC calculation in a homogeneous water phantom agree within 2.3% of the global max dose or 1 mm distance to agreement to measurements for all except the smallest field size. Comparing the film measurement to calculated dose, 99.9% of all voxels pass gamma analysis, comparing dose calculated by the IDC framework to TPS calculated dose for the clinical prostate plan shows 99.0% passing rate. IDC calculated dose is found to be up to 5.6% lower than dose calculated by the TPS in this case near metal fiducial markers. An MC-based modular IDC framework was successfully developed, implemented and validated against measurements and is now available to perform patient-specific QA by IDC.


Assuntos
Método de Monte Carlo , Neoplasias/cirurgia , Imagens de Fantasmas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Humanos , Radiometria , Dosagem Radioterapêutica
20.
Phys Med Biol ; 61(8): 3208-21, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27025897

RESUMO

Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within ±0.4 s and doses ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min(-1) for conventional fractionation. A tool to analyze dose rate distributions in VMAT plans with sub-second accuracy was successfully developed and validated. Dose rates encountered in clinical VMAT test cases show a continuous spectrum with a mean less than or near 100 cGy min(-1) for conventional fractionation.


Assuntos
Neoplasias Encefálicas/radioterapia , Fracionamento da Dose de Radiação , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias Hepáticas/radioterapia , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA