Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Occup Hyg ; 58(1): 60-73, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24064962

RESUMO

Pulsations generated by personal sampling pumps modulate the airflow through the sampling trains, thereby varying sampling efficiencies, and possibly invalidating collection or monitoring. The purpose of this study was to characterize pulsations generated by personal sampling pumps relative to a nominal flow rate at the inlet of different respirable cyclones. Experiments were conducted using a factorial combination of 13 widely used sampling pumps (11 medium and 2 high volumetric flow rate pumps having a diaphragm mechanism) and 7 cyclones [10-mm nylon also known as Dorr-Oliver (DO), Higgins-Dewell (HD), GS-1, GS-3, Aluminum, GK2.69, and FSP-10]. A hot-wire anemometer probe cemented to the inlet of each cyclone type was used to obtain pulsation readings. The three medium flow rate pump models showing the highest, a midrange, and the lowest pulsations and two high flow rate pump models for each cyclone type were tested with dust-loaded filters (0.05, 0.21, and 1.25mg) to determine the effects of filter loading on pulsations. The effects of different tubing materials and lengths on pulsations were also investigated. The fundamental frequency range was 22-110 Hz and the magnitude of pulsation as a proportion of the mean flow rate ranged from 4.4 to 73.1%. Most pump/cyclone combinations generated pulse magnitudes ≥10% (48 out of 59 combinations), while pulse shapes varied considerably. Pulsation magnitudes were not considerably different for the clean and dust-loaded filters for the DO, HD, and Aluminum cyclones, but no consistent pattern was observed for the other cyclone types. Tubing material had less effect on pulsations than tubing length; when the tubing length was 183cm, pronounced damping was observed for a pump with high pulsation (>60%) for all tested tubing materials except for the Tygon Inert tubing. The findings in this study prompted a further study to determine the possibility of shifts in cyclone sampling efficiency due to sampling pump pulsations, and those results are reported subsequently.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/instrumentação , Movimentos do Ar , Desenho de Equipamento/normas , Humanos , Exposição por Inalação/análise , Exposição Ocupacional/análise , Tamanho da Partícula
2.
Ann Occup Hyg ; 58(1): 74-84, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24064963

RESUMO

This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 µm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the DO cyclone. However, for three models of pumps producing 30%, 56%, and 70% pulsations, substantial changes were confirmed. The GK2.69 cyclone showed a similar pattern to that of the DO cyclone, i.e. no change in sampling efficiency for the Legacy producing 15% pulsation and a substantial change for the Elite12 producing 41% pulsation. Pulse shape did not cause any change in sampling efficiency when compared to the single sine wave. The findings suggest that 25% pulsation at the inlet of the cyclone as measured by this test can be acceptable for the respirable particle collection. If this test is used in place of that currently in European standards (EN 1232-1997 and EN 12919-1999) or is used in any International Organization for Standardization standard, then a 25% pulsation criterion could be adopted. This work suggests that a 10% criterion as currently specified in the European standards for testing may be overly restrictive and not able to be met by many pumps on the market. Further work is recommended to determine which criterion would be applicable to this test if it is to be retained in its current form.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/instrumentação , Aerossóis/análise , Movimentos do Ar , Monitoramento Ambiental/normas , Desenho de Equipamento/normas , Humanos , Exposição por Inalação/análise , Exposição Ocupacional/análise , Tamanho da Partícula
3.
Rev Sci Instrum ; 78(1): 014101, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17503934

RESUMO

A novel system [field and laboratory emission cell (FLEC) automation and control system] has been developed to deliver ozone to a surface utilizing the FLEC to simulate indoor surface chemistry. Ozone, humidity, and air flow rate to the surface were continuously monitored using an ultraviolet ozone monitor, humidity, and flow sensors. Data from these sensors were used as feedback for system control to maintain predetermined experimental parameters. The system was used to investigate the chemistry of ozone with alpha-terpineol on a vinyl surface over 72 h. Keeping all other experimental parameters the same, volatile organic compound emissions from the vinyl tile with alpha-terpineol were collected from both zero and 100 ppb (parts per 10(9)) ozone exposures. System stability profiles collected from sensor data indicated experimental parameters were maintained to within a few percent of initial settings. Ozone data from eight experiments at 100 ppb (over 339 h) provided a pooled standard deviation of 1.65 ppb and a 95% tolerance of 3.3 ppb. Humidity data from 17 experiments at 50% relative humidity (over 664 h) provided a pooled standard deviation of 1.38% and a 95% tolerance of 2.77%. Data of the flow rate of air flowing through the FLEC from 14 experiments at 300 ml/min (over 548 h) provided a pooled standard deviation of 3.02 ml/min and a 95% tolerance range of 6.03 ml/min. Initial experimental results yielded long term emissions of ozone/alpha-terpineol reaction products, suggesting that surface chemistry could play an important role in indoor environments.


Assuntos
Ar/análise , Cicloexenos/análise , Monitoramento Ambiental , Monoterpenos/análise , Ozônio/química , Automação , Monoterpenos Cicloexânicos , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Umidade , Sensibilidade e Especificidade
4.
Rev Sci Instrum ; 83(8): 085103, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22938328

RESUMO

Nitrate radical (NO(3)(●)) surface chemistry of indoor environments has not been well studied due to the difficulty in generating and maintaining NO(3)(●) at low concentrations for long term exposures. This article presents the Surface Chemistry Reactant Air Delivery and Experiment System (SCRADES), a novel feedback controlled system developed to deliver nitrate radicals at specified concentrations (50-500 ppt, ±30 ppt) and flow rates (500-2000 ml min(-1)) to a variety of indoor surfaces to initiate reaction chemistry for periods of up to 72 h. The system uses a cavity ring-down spectrometer (CRDS), with a detection limit of 1.7 ppt, to measure the concentration of NO(3)(●) supplied to a 24 l experiment chamber. Nitrate radicals are introduced via thermal decomposition of N(2)O(5) and diluted with clean dry air until the desired concentration is achieved. Additionally, this article addresses details concerning NO(3)(●) loss through the system, consistency of the NO(3)(●) concentration delivered, and stability of the CRDS cavity over long exposure durations (72 h).


Assuntos
Retroalimentação , Nitratos/química , Análise Espectral/instrumentação , Automação , Radicais Livres/química , Umidade , Óxidos de Nitrogênio/química , Politetrafluoretileno/química , Compostos Orgânicos Voláteis/química
5.
Appl Spectrosc ; 65(3): 243-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21352643

RESUMO

Occupational exposure to airborne wood dust has been implicated in the development of several symptoms and diseases, including nasal carcinoma. However, the assessment of occupational wood dust exposure is usually performed by gravimetric analysis, which is non-specific. In this study, a mid-infrared (mid-IR) diffuse reflection method was adapted for direct on-filter determination of wood dust mass. The cup from the diffuse reflection unit was replaced with a horizontal translational stage and a filter with wood dust was set thereon. Diffuse reflection (DR) spectra were collected from filters with six different diameters in order to average the signal from the most filter surface. Two absorption bands around 1595 and 1510 cm(-1), attributed to lignin, were monitored for quantitative analysis. Calibration curves were constructed for standard extrathoracic red oak and yellow pine (aerodynamic particle diameters between 10 and 100 µm). Calibration of DR intensity versus known wood dust mass on the filter using the Kubelka-Munk function showed a nonlinear dependence for mass of less than 10 mg of wood dust. The experimental data and small-thickness samples indicate that Kubelka-Munk conditions are not obeyed. Alternatively, the pseudo-absorption function log(1/R), for which R is the relative reflectance, while still giving nonlinear dependence against mass, is closer to a linear dependence and has been preferred by other researchers. Therefore, we consider the use of the log(1/R) function for mid-infrared DR analysis of neat, small-thickness wood dust samples. Furthermore, we suggest the use of a silver metal membrane filter for direct on-filter analysis of wood dust rather than the glass fiber filters that have been used previously.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poeira/análise , Monitoramento Ambiental/instrumentação , Filtração/instrumentação , Lignina/química , Madeira/química , Calibragem , Monitoramento Ambiental/métodos , Desenho de Equipamento , Filtração/métodos , Exposição Ocupacional/análise , Espectrofotometria Infravermelho/instrumentação , Espectrofotometria Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA