Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Ultrasound Med ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248553

RESUMO

PURPOSE: The aim of this study was to compare liver size measurements in different conventional B-mode ultrasound image (US) field views using magnetic resonance imaging (MRI) measurement as a reference. METHODS: After receiving Institutional Review Board approval and informed consent, three operators measured the largest sagittal and transverse dimensions of adult livers on three US image field views (90°, 120°, and 140°) with a single curvilinear transducer. We analyzed the differences in liver size across three image field views using one-way analysis of variance (ANOVA) and examined the correlations between MRI and ultrasound measurements using Spearman regression. We used 95% Bland-Altman limits of agreement (95% LOA) to analyze the confidence interval for liver size measurements between MRI and US. Intra-observer and inter-observer reliability in measuring liver size were assessed using intraclass correlation coefficient (ICC). RESULTS: Based on sagittal liver length, 28 adult participants (7 men and 21 women, mean age 43 years) were divided into Group 1 (<17 cm, n = 10) or Group 2 (≥17 cm, n = 18). There was a significant difference in the liver size measurements across the three image field views (P < .001) in both groups. The highest correlation in liver size measurements between MRI and US was with ultra-wide-view (R2 = .87 in sagittal; R2 = .79 in transverse). Bland-Altman LOA also indicated good agreement between MRI and ultra-wide-view measurements. Intra-observer and inter-observer reliability in measuring liver size were good (ICC = 0.82-0.98). CONCLUSION: The study suggests that ultrasound ultra-wide-view provides the most accurate liver size measurement and good intra- and inter-operator reliability.

2.
Am J Bot ; 108(6): 1016-1028, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34114219

RESUMO

PREMISE: Pollinator foraging behavior can influence pollen dispersal and gene flow. In many plant species a pollinator trips a flower by applying pressure to release its sexual organs. We propose that differences in tripping rate among grooming pollinators could generate distinct pollen deposition curves, the pattern of pollen deposition over successive flowers visited. This study compares the pollen deposition curves of two grooming pollinators, a social bumble bee and a solitary leafcutting bee, with distinct tripping rates on Medicago sativa flowers. We predict a steeper deposition curve for pollen moved by leafcutting bees, the pollinator with the higher tripping rate. METHODS: Medicago sativa plants carrying a gene (GUS) whose product is easily detected by staining, were used as pollen donors. After visiting the GUS plants, a bee was released on a linear array of conventional M. sativa plants. The number of GUS pollen grains deposited over successive flowers visited or over cumulative distances was examined. Distinct mixed effect Poisson regression models, illustrating different rates of decay in pollen deposition, were fitted to the pollen data for each bee species. RESULTS: Pollen decay was steeper for leafcutting bees relative to bumble bees for both models of flowers visited and cumulative distance, as predicted by their higher tripping rate. CONCLUSIONS: This is the first report of a difference in pollen deposition curves between two bee species, both grooming pollinators. Such differences could lead to distinct impacts of bee species on gene flow, genetic differentiation, introgression, and ultimately speciation.


Assuntos
Fluxo Gênico , Polinização , Animais , Abelhas/genética , Flores , Medicago sativa/genética , Pólen/genética
3.
Bioorg Med Chem ; 28(10): 115481, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32253095

RESUMO

Herein, we disclose a new series of TYK2/ JAK1 inhibitors based upon a 3.1.0 azabicyclic substituted pyrimidine scaffold. We illustrate the use of structure-based drug design for the initial design and subsequent optimization of this series of compounds. One advanced example 19 met program objectives for potency, selectivity and ADME, and demonstrated oral activity in the adjuvant-induced arthritis rat model.


Assuntos
Artrite Experimental/tratamento farmacológico , Desenho de Fármacos , Janus Quinase 1/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , TYK2 Quinase/antagonistas & inibidores , Animais , Artrite Experimental/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Janus Quinase 1/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Ratos , Ratos Endogâmicos Lew , Relação Estrutura-Atividade , TYK2 Quinase/metabolismo
4.
Oecologia ; 193(4): 789-799, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32419048

RESUMO

Predators and pathogens often regulate the population dynamics of their prey or hosts. When species interact with both their predators and their pathogens, understanding each interaction in isolation may not capture the system's dynamics. For instance, predators can influence pathogen transmission via consumptive effects, such as feeding on infected prey, or non-consumptive effects, such as changing the prey's susceptibility to infection. A prey species' infection status can, in turn, influence predator's choice of prey and have negative fitness consequences for the predator. To test how intraguild predation (IGP), when predator and pathogen share the same prey/host, affects pathogen transmission, predator preference, and predator fitness, we conducted a series of experiments using a crop pest (Pseudoplusia includens), a generalist predator (Podisus maculiventris), and a generalist pathogen (Autographa californica multicapsid nuclear polyhedrovirus, AcMNPV). Using a field experiment, we quantified the effects of consumptive and non-consumptive predators on pathogen transmission. We found that a number of models provided similar fits to the data. These models included null models showing no effects of predation and models that included a predation effect. We also found that predators consumed infected prey more often when choosing between live infected or live healthy prey. Infected prey also reduced predator fitness. Developmental times of predators fed infected prey increased by 20% and longevity decreased by 45%, compared with those that consumed an equivalent number of non-infected prey. While this research shows an effect of the pathogen on intraguild predator fitness, we found no support that predators affected pathogen transmission.


Assuntos
Herbivoria , Heterópteros , Animais , Cadeia Alimentar , Dinâmica Populacional , Comportamento Predatório
5.
Ecology ; 99(6): 1430-1440, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29771449

RESUMO

Plant-soil feedbacks (PSFs) influence plant competition via direct interactions with pathogens and mutualists or indirectly via apparent competition/mutualisms (i.e., spillover to co-occurring plants) and soil legacy effects. It is currently unknown how intraspecific variation in PSFs interacts with the environment (e.g., nutrient availability) to influence competition between native and invasive plants. We conducted a fully crossed multi-factor greenhouse experiment to determine the effects of Phragmites australis rhizosphere soil biota, interspecific competition, and nutrient availability on biomass of replicate populations from one native and two invasive lineages of common reed (P. australis) and a single lineage of native smooth cordgrass (Spartina alterniflora). Harmful soil biota consistently dominated PSFs involving all three P. australis lineages, reducing biomass by 10%. Indirect PSFs (i.e., soil biota spillover) from the two invasive P. australis lineages reduced S. alterniflora biomass by 7%, whereas PSFs from the native P. australis lineage increased S. alterniflora biomass by 6%. Interestingly, interspecific competition and PSFs interacted to weaken their respective impacts on S. alterniflora, whereas they exerted synergistic negative effects on P. australis. Phragmites australis soil biota decreased S. alterniflora biomass when grown alone (i.e., a soil legacy), but increased S. alterniflora biomass when grown with P. australis, suggesting that P. australis recruits harmful generalist soil biota or facilitates S. alterniflora via spillover (i.e., apparent mutualism). Soil biota also reduced interspecific competition impacts on S. alterniflora, although it remained competitively inferior to P. australis across all treatments. Competitive interactions and responses to nutrients did not differ among P. australis lineages, indicating that interspecific competition and nutrient deposition may not be key drivers of P. australis invasion in North America. Although soil biota, interspecific competition, and nutrient availability appear to have no direct impact on the success of invasive P. australis lineages in North America, intraspecific lineage variation in indirect spillover and soil legacies from P. australis occur and may have important implications for co-occurring native species and restoration of invaded habitats. Our study integrates multiple factors linked to plant invasions, highlighting that indirect interactions are likely commonplace in influencing plant community dynamics and invasion success and impacts.


Assuntos
Solo , Áreas Alagadas , América do Norte , Plantas , Poaceae
6.
Am Nat ; 190(3): 299-312, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28829639

RESUMO

Cannibalism occurs in a majority of both carnivorous and noncarnivorous animal taxa from invertebrates to mammals. Similarly, infectious parasites are ubiquitous in nature. Thus, interactions between cannibalism and disease occur regularly. While some adaptive benefits of cannibalism are clear, the prevailing view is that the risk of parasite transmission due to cannibalism would increase disease spread and, thus, limit the evolutionary extent of cannibalism throughout the animal kingdom. In contrast, surprisingly little attention has been paid to the other half of the interaction between cannibalism and disease, that is, how cannibalism affects parasites. Here we examine the interaction between cannibalism and parasites and show how advances across independent lines of research suggest that cannibalism can also reduce the prevalence of parasites and, thus, infection risk for cannibals. Cannibalism does this by both directly killing parasites in infected victims and by reducing the number of susceptible hosts, often enhanced by the stage-structured nature of cannibalism and infection. While the well-established view that disease should limit cannibalism has held sway, we present theory and examples from a synthesis of the literature showing how cannibalism may also limit disease and highlight key areas where conceptual and empirical work is needed to resolve this debate.


Assuntos
Canibalismo , Mamíferos/parasitologia , Doenças dos Animais , Animais , Evolução Biológica , Interações Hospedeiro-Parasita
7.
Bioorg Med Chem ; 24(9): 1937-80, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27020685

RESUMO

New drugs introduced to the market every year represent privileged structures for particular biological targets. These new chemical entities (NCEs) provide insight into molecular recognition and also serve as leads for designing future new drugs. This annual review covers the synthesis of thirty-seven NCEs that were approved for the first time in 2014 and one drug which was approved in 2013 and was not covered in a previous edition of this review.


Assuntos
Desenho de Fármacos , Comércio , Indústria Farmacêutica
8.
Bioorg Med Chem ; 23(9): 1895-922, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25797159

RESUMO

New drugs introduced to the market every year represent privileged structures for particular biological targets. These new chemical entities (NCEs) provide insight into molecular recognition and also serve as leads for designing future new drugs. This annual review covers the synthesis of twenty-four NCEs that were approved for the first time in 2013 and two 2012 drugs which were not covered during the previous edition of this review.


Assuntos
Preparações Farmacêuticas/síntese química , Desenho de Fármacos , Estrutura Molecular , Preparações Farmacêuticas/química
9.
Bioorg Med Chem ; 22(7): 2005-32, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24629448

RESUMO

New drugs introduced to the market every year represent a privileged structure for a particular biological target. These new chemical entities (NCEs) provide insights into molecular recognition and also serve as leads for designing future new drugs. This review covers the synthesis of twenty-six NCEs that were launched or approved worldwide in 2012 and two additional drugs which were launched at the end of 2011.


Assuntos
Preparações Farmacêuticas/síntese química , Estrutura Molecular , Preparações Farmacêuticas/química
10.
J Med Chem ; 67(6): 4376-4418, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38488755

RESUMO

In 2022, 23 new small molecule chemical entities were approved as drugs by the United States FDA, European Union EMA, Japan PMDA, and China NMPA. This review describes the synthetic approach demonstrated on largest scale for each new drug based on patent or primary literature. The synthetic routes highlight practical methods to construct molecules, sometimes on the manufacturing scale, to access the new drugs. Ten additional drugs approved in 2021 and one approved in 2020 are included that were not covered in the previous year's review.


Assuntos
Aprovação de Drogas , Estados Unidos , Japão , United States Food and Drug Administration , China
11.
J Med Chem ; 67(12): 10306-10320, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38872300

RESUMO

Selective inhibition of the RGD (Arg-Gly-Asp) integrin αvß1 has been recently identified as an attractive therapeutic approach for the treatment of liver fibrosis given its function, target expression, and safety profile. Our identification of a non-RGD small molecule lead followed by focused, systematic changes to the core structure utilizing a crystal structure, in silico modeling, and a tractable synthetic approach resulted in the identification of a potent small molecule exhibiting a remarkable affinity for αvß1 relative to several other integrin isoforms measured. Azabenzimidazolone 25 demonstrated antifibrotic efficacy in an in vivo rat liver fibrosis model and represents a tool compound capable of further exploring the biological consequences of selective αvß1 inhibition.


Assuntos
Desenho de Fármacos , Receptores de Vitronectina , Animais , Ratos , Humanos , Receptores de Vitronectina/antagonistas & inibidores , Receptores de Vitronectina/metabolismo , Relação Estrutura-Atividade , Cirrose Hepática/tratamento farmacológico , Modelos Moleculares , Descoberta de Drogas , Ratos Sprague-Dawley , Masculino , Cristalografia por Raios X , Benzimidazóis/farmacologia , Benzimidazóis/química , Benzimidazóis/síntese química
12.
Nat Commun ; 15(1): 7574, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217154

RESUMO

The CC chemokine receptor 6 (CCR6) is a potential target for chronic inflammatory diseases. Previously, we reported an active CCR6 structure in complex with its cognate chemokine CCL20, revealing the molecular basis of CCR6 activation. Here, we present two inactive CCR6 structures in ternary complexes with different allosteric antagonists, CCR6/SQA1/OXM1 and CCR6/SQA1/OXM2. The oxomorpholine analogues, OXM1 and OXM2 are highly selective CCR6 antagonists which bind to an extracellular pocket and disrupt the receptor activation network. An energetically favoured U-shaped conformation in solution that resembles the bound form is observed for the active analogues. SQA1 is a squaramide derivative with close-in analogues reported as antagonists of chemokine receptors including CCR6. SQA1 binds to an intracellular pocket which overlaps with the G protein site, stabilizing a closed pocket that is a hallmark of inactive GPCRs. Minimal communication between the two allosteric pockets is observed, in contrast to the prevalent allosteric cooperativity model of GPCRs. This work highlights the versatility of GPCR antagonism by small molecules, complementing previous knowledge of CCR6 activation, and sheds light on drug discovery targeting CCR6.


Assuntos
Receptores CCR6 , Receptores CCR6/metabolismo , Receptores CCR6/química , Humanos , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico , Ligação Proteica , Sítios de Ligação , Modelos Moleculares , Cristalografia por Raios X
13.
Bioorg Med Chem ; 21(11): 2795-825, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23623674

RESUMO

New drugs are introduced to the market every year and each represents a privileged structure for its biological target. These new chemical entities (NCEs) provide insights into molecular recognition and also serve as leads for designing future new drugs. This review covers the synthesis of 26 NCEs that were launched in the world in 2011.


Assuntos
Aprovação de Drogas , Desenho de Fármacos , Preparações Farmacêuticas/síntese química , Humanos
14.
ACS Med Chem Lett ; 14(2): 191-198, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36793423

RESUMO

Macrocyclic retinoic acid receptor-related orphan receptor C2 (RORC2) inverse agonists have been designed with favorable properties for topical administration. Inspired by the unanticipated bound conformation of an acyclic sulfonamide-based RORC2 ligand from cocrystal structure analysis, macrocyclic linker connections between the halves of the molecule were explored. Further optimization of analogues was accomplished to maximize potency and refine physiochemical properties (MW, lipophilicity) best suited for topical application. Compound 14 demonstrated potent inhibition of interleukin-17A (IL-17A) production by human Th17 cells and in vitro permeation through healthy human skin achieving high total compound concentration in both skin epidermis and dermis layers.

15.
J Med Chem ; 66(15): 10150-10201, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37528515

RESUMO

Each year, new drugs are introduced to the market, representing structures that have affinity for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates, provide insight into molecular recognition and serve as potential leads for the design of future medicines. This annual review is part of a continuing series highlighting the most likely process-scale synthetic approaches to 35 NCEs that were first approved anywhere in the world during 2021.


Assuntos
Desenho de Fármacos , Humanos , Preparações Farmacêuticas , Imunoconjugados/química
16.
Bioorg Med Chem ; 20(3): 1155-74, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22261026

RESUMO

New drugs are introduced to the market every year and each represents a privileged structure for its biological target. These new chemical entities (NCEs) provide insights into molecular recognition and also serve as leads for designing future new drugs. This review covers the synthesis of 15 NCEs that were launched anywhere in the world in 2010.


Assuntos
Técnicas de Química Sintética/métodos , Desenho de Fármacos , Preparações Farmacêuticas/síntese química , Estrutura Molecular , Preparações Farmacêuticas/química
17.
J Med Chem ; 65(14): 9607-9661, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35833579

RESUMO

New drugs introduced to the market are privileged structures that have affinities for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates (ADCs), provide insight into molecular recognition and simultaneously function as leads for the design of future medicines. This Review is part of a continuing series presenting the most likely process-scale synthetic approaches to 44 new chemical entities approved for the first time anywhere in the world during 2020.


Assuntos
Desenho de Fármacos , Imunoconjugados , Humanos
18.
J Med Chem ; 65(1): 757-784, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34967602

RESUMO

A diaryl ketone series was identified as vanin-1 inhibitors from a high-throughput screening campaign. While this novel scaffold provided valuable probe 2 that was used to build target confidence, concerns over the ketone moiety led to the replacement of this group. The successful replacement of this moiety was achieved with pyrimidine carboxamides derived from cyclic secondary amines that were extensively characterized using biophysical and crystallographic methods as competitive inhibitors of vanin-1. Through optimization of potency and physicochemical and ADME properties, and guided by co-crystal structures with vanin-1, 3 was identified with a suitable profile for advancement into preclinical development.


Assuntos
Amidoidrolases/antagonistas & inibidores , Piridinas/síntese química , Piridinas/farmacologia , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Cristalografia por Raios X , Sulfato de Dextrana , Cães , Descoberta de Drogas , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Cetonas/química , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Piridinas/farmacocinética , Ratos , Relação Estrutura-Atividade
19.
Bioorg Med Chem ; 19(3): 1136-54, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21256756

RESUMO

New drugs are introduced to the market every year and each individual drug represents a privileged structure for its biological target. These new chemical entities (NCEs) provide insights into molecular recognition and also serve as leads for designing future new drugs. This review covers the syntheses of 21 NCEs marketed in 2009.


Assuntos
Aprovação de Drogas , Desenho de Fármacos , Terapia de Alvo Molecular , Preparações Farmacêuticas/síntese química , Humanos
20.
J Med Chem ; 64(7): 3604-3657, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33783211

RESUMO

New drugs introduced to the market are privileged structures having affinities for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates, provide insight into molecular recognition and simultaneously function as leads for the design of future medicines. This review is part of a continuing series presenting the most likely process-scale synthetic approaches to 40 NCEs approved for the first time anywhere in the world in 2019.


Assuntos
Técnicas de Química Sintética/métodos , Compostos Orgânicos/síntese química , Preparações Farmacêuticas/síntese química , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA