RESUMO
Sperm guidance is controlled by chemical and physical cues. In many species, Ca(2+) bursts in the flagellum govern navigation to the egg. In Arbacia punctulata, a model system of sperm chemotaxis, a cGMP signaling pathway controls these Ca(2+) bursts. The underlying Ca(2+) channel and its mechanisms of activation are unknown. Here, we identify CatSper Ca(2+) channels in the flagellum of A. punctulata sperm. We show that CatSper mediates the chemoattractant-evoked Ca(2+) influx and controls chemotactic steering; a concomitant alkalization serves as a highly cooperative mechanism that enables CatSper to transduce periodic voltage changes into Ca(2+) bursts. Our results reveal intriguing phylogenetic commonalities but also variations between marine invertebrates and mammals regarding the function and control of CatSper. The variations probably reflect functional and mechanistic adaptations that evolved during the transition from external to internal fertilization.
Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Quimiotaxia/fisiologia , Evolução Molecular , Potenciais da Membrana/fisiologia , Ouriços-do-Mar/metabolismo , Animais , Canais de Cálcio/genética , Masculino , Ouriços-do-Mar/genéticaRESUMO
TRPM channels have emerged as key mediators of diverse physiological functions. However, the ionic permeability relevant to physiological function in vivo remains unclear for most members. We report that the single Drosophila TRPM gene (dTRPM) generates a conductance permeable to divalent cations, especially Zn(2+) and in vivo a loss-of-function mutation in dTRPM disrupts intracellular Zn(2+) homeostasis. TRPM deficiency leads to profound reduction in larval growth resulting from a decrease in cell size and associated defects in mitochondrial structure and function. These phenotypes are cell-autonomous and can be recapitulated in wild-type animals by Zn(2+) depletion. Both the cell size and mitochondrial defect can be rescued by extracellular Zn(2+) supplementation. Thus our results implicate TRPM channels in the regulation of cellular Zn(2+) in vivo. We propose that regulation of Zn(2+) homeostasis through dTRPM channels is required to support molecular processes that mediate class I PI3K-regulated cell growth.