Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 200: 108254, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32961174

RESUMO

Ongoing research using cell transplantation and viral-mediated gene therapy has been making progress to restore vision by retinal repair, but targeted delivery and complete cellular integration remain challenging. An alternative approach is to induce endogenous Müller glia (MG) to regenerate lost neurons and photoreceptors, as occurs spontaneously in teleost fish and amphibians. Extracellular vesicles (EVs) can transfer protein and RNA cargo between cells serving as a novel means of cell-cell communication. We conducted an in vivo screen in zebrafish to identify sources of EVs that could induce MG to dedifferentiate and generate proliferating progenitor cells after intravitreal injection into otherwise undamaged zebrafish eyes. Small EVs (sEVs) from C6 glioma cells were the most consistent at inducing MG-derived proliferating cells. Ascl1a expression increased after intravitreal injection of C6 sEVs and knockdown of ascl1a inhibited the induction of proliferation. Proteomic and RNAseq analyses of EV cargo content were performed to begin to identify key factors that might target EVs to MG and initiate retina regeneration.


Assuntos
Vesículas Extracelulares , Neurogênese , Células Fotorreceptoras de Invertebrados/metabolismo , Proteômica/métodos , Retina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Proliferação de Células , Células Cultivadas , Injeções , Células Fotorreceptoras de Invertebrados/citologia , Retina/citologia , Peixe-Zebra
2.
bioRxiv ; 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36711649

RESUMO

Zebrafish spontaneously regenerate their retina in response to damage through the action of Müller glia. Even though Müller glia (MG) are conserved in higher vertebrates, the capacity to regenerate retinal damage is lost. Recent work has focused on the regulation of inflammation during tissue regeneration with precise temporal roles for macrophages and microglia. Senescent cells that have withdrawn from the cell cycle have mostly been implicated in aging, but are still metabolically active, releasing proinflammatory signaling molecules as part of the Senescence Associated Secretory Phenotype (SASP). Here, we discover that in response to retinal damage, a subset of cells expressing markers of microglia/macrophages also express markers of senescence. These cells display a temporal pattern of appearance and clearance during retina regeneration. Premature removal of senescent cells by senolytic treatment led to a decrease in proliferation and incomplete repair of the ganglion cell layer after NMDA damage. Our results demonstrate a role for modulation of senescent cell responses to balance inflammation, regeneration, plasticity, and repair as opposed to fibrosis and scarring.

3.
Front Cell Dev Biol ; 8: 632632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33537319

RESUMO

The use of model systems that are capable of robust, spontaneous retina regeneration has allowed for the identification of genetic pathways and components that are required for retina regeneration. Complemented by mouse models in which retina regeneration can be induced after forced expression of key factors, altered chromatin accessibility, or inhibition of kinase/signaling cascades, a clearer picture of the key regulatory events that control retina regeneration is emerging. In all cases, Müller glia (MG) serve as an adult retinal stem cell that must be reprogrammed to allow for regeneration, with the end goal being to understand why regenerative pathways are blocked in mammals, but spontaneous in other vertebrates such as zebrafish. miRNAs have emerged as key gene regulatory molecules that control both development and regeneration in vertebrates. Here, we focus on a small subset of miRNAs that control MG reprogramming during retina regeneration and have the potential to serve as therapeutic targets for treatment of visual disorders and damage.

4.
Int J Nanomedicine ; 10: 229-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25565816

RESUMO

H5N1 avian influenza is a significant global concern with the potential to become the next pandemic threat. Recombinant subunit vaccines are an attractive alternative for pandemic vaccines compared to traditional vaccine technologies. In particular, polyanhydride nanoparticles encapsulating subunit proteins have been shown to enhance humoral and cell-mediated immunity and provide protection upon lethal challenge. In this work, a recombinant H5 hemagglutinin trimer (H53) was produced and encapsulated into polyanhydride nanoparticles. The studies performed indicated that the recombinant H53 antigen was a robust immunogen. Immunizing mice with H53 encapsulated into polyanhydride nanoparticles induced high neutralizing antibody titers and enhanced CD4(+) T cell recall responses in mice. Finally, the H53-based polyanhydride nanovaccine induced protective immunity against a low-pathogenic H5N1 viral challenge. Informatics analyses indicated that mice receiving the nanovaccine formulations and subsequently challenged with virus were similar to naïve mice that were not challenged. The current studies provide a basis to further exploit the advantages of polyanhydride nanovaccines in pandemic scenarios.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Imunidade Celular , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/química , Influenza Humana/imunologia , Polianidridos/química , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Análise de Componente Principal , Vacinação , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA