Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 611(7935): 260-264, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36352135

RESUMO

In most cosmological models, rapid expansion of space marks the first moments of the Universe and leads to the amplification of quantum fluctuations1. The description of subsequent dynamics and related questions in cosmology requires an understanding of the quantum fields of the standard model and dark matter in curved spacetime. Even the reduced problem of a scalar quantum field in an explicitly time-dependent spacetime metric is a theoretical challenge2-5, and thus a quantum field simulator can lead to insights. Here we demonstrate such a quantum field simulator in a two-dimensional Bose-Einstein condensate with a configurable trap6,7 and adjustable interaction strength to implement this model system. We explicitly show the realization of spacetimes with positive and negative spatial curvature by wave-packet propagation and observe particle-pair production in controlled power-law expansion of space, using Sakharov oscillations to extract amplitude and phase information of the produced state. We find quantitative agreement with analytical predictions for different curvatures in time and space. This benchmarks and thereby establishes a quantum field simulator of a new class. In the future, straightforward upgrades offer the possibility to enter unexplored regimes that give further insight into relativistic quantum field dynamics.

2.
Phys Rev Lett ; 114(9): 091301, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793794

RESUMO

The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein's field equations. We show how this backreaction effect depends on shear and bulk viscosity and other material properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could account for the acceleration of the cosmological expansion.

3.
Phys Rev E ; 102(5-1): 052117, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33327109

RESUMO

Thermodynamics can be developed from a microscopic starting point in terms of entropy and the maximum entropy principle. We investigate here to what extent one can replace entropy with relative entropy which has several advantages, for example, in the context of local quantum field theory. We find that the principle of maximum entropy can be replaced by a principle of minimum expected relative entropy. Various ensembles and their thermodynamic potentials can be defined through relative entropy. We also show that thermal fluctuations are in fact governed by a relative entropy. Furthermore, we reformulate the third law of thermodynamics using relative entropy only.

4.
Philos Trans A Math Phys Eng Sci ; 369(1946): 2779-99, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21646278

RESUMO

We review the functional renormalization group (RG) approach to the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation (BCS-BEC) crossover for an ultracold gas of fermionic atoms. Formulated in terms of a scale-dependent effective action, the functional RG interpolates continuously between the atomic or molecular microphysics and the macroscopic physics on large length scales. We concentrate on the discussion of the phase diagram as a function of the scattering length and the temperature, which is a paradigm example for the non-perturbative power of the functional RG. A systematic derivative expansion provides for both a description of the many-body physics and its expected universal features as well as an accurate account of the few-body physics and the associated BEC and BCS limits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA