Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ground Water ; 45(4): 439-46, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17600574

RESUMO

Eogenetic karst lies geographically and temporally close to the depositional environment of limestone in warm marine water at low latitude, in areas marked by midafternoon thunderstorms during a summer rainy season. Spring hydrographs from such an environment in north-central Florida are characterized by smooth, months-long, seasonal maxima. The passage of Hurricanes Frances and Jeanne in September 2004 over three field locations shows how the eogenetic karst of the Upper Floridan Aquifer responds to unequivocal recharge events. Hydrographs at wells in the High Springs area, Rainbow Springs, and at Morris, Briar, and Bat Caves all responded promptly with a similar drawn-out rise to a maximum that extended long into the winter dry season. The timing indicates that the typical hydrograph of eogenetic karst is not the short-term fluctuations of springs in epigenic, telogenetic karst, or the smoothed response to all the summer thunderstorms, but rather the protracted response of the system to rainfall that exceeds a threshold. The similarity of cave and noncave hydrographs indicates distributed autogenic recharge and a free communication between secondary porosity and permeable matrix-both of which differ from the hydrology of epigenic, telogenetic karst. At Briar Cave, drip rates lagged behind the water table rise, suggesting that recharge was delivered by fractures, which control the cave's morphology. At High Springs, hydrographs at the Santa Fe River and a submerged conduit apparently connected to it show sharp maxima after the storms, unlike the other cave hydrographs. Our interpretation is that the caves, in general, are discontinuous.


Assuntos
Desastres , Movimentos da Água , Monitoramento Ambiental , Florida , Fenômenos Geológicos , Geologia , Rios
2.
Ground Water ; 44(3): 352-61, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16681516

RESUMO

Matrix permeability in the range of 10(-11) to 10(-14) m(2) characterizes eogenetic karst, where limestones have not been deeply buried. In contrast, limestones of postburial, telogenetic karst have matrix permeabilities on the order of 10(-15) to 10(-20) m(2). Is this difference in matrix permeability paralleled by a difference in the behavior of springs draining eogenetic and telogenetic karst? Log Q/Q(min) flow duration curves from 11 eogenetic-karst springs in Florida and 12 telogenetic-karst springs in Missouri, Kentucky, and Switzerland, plot in different fields because of the disparate slopes of the curves. The substantially lower flow variability in eogenetic-karst springs, which results in the steeper slopes of their flow duration curves, also makes for a strong contrast in patterns (e.g., "flashiness") between the eogenetic-karst and telogenetic-karst spring hydrographs. With respect to both spring hydrographs and the flow duration curves derived from them, the eogenetic-karst springs of Florida are more like basalt springs of Idaho than the telogenetic-karst springs of the study. From time-series analyses on discharge records for 31 springs and published time-series results for 28 additional sites spanning 11 countries, we conclude that (1) the ratio of maximum to mean (Q(max)/Q(mean)) discharge is less in springs of eogenetic karst than springs of telogenetic karst; (2) aquifer inertia (system memory) is larger in eogenetic karst; (3) eogenetic-karst aquifers take longer to respond to input signals; and (4) high-frequency events affect discharge less in eogenetic karst. All four of these results are consistent with the hypothesis that accessible storage is larger in eogenetic-karst aquifers than in telogenetic-karst aquifers.


Assuntos
Água Doce , Florida , Modelos Teóricos
5.
Isotopes Environ Health Stud ; 46(2): 190-209, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20582788

RESUMO

Data from a 10-month monitoring study during 2007 in the Everglades ecosystem provide insight into the variation of delta(18)O, deltaD, and ion chemistry in surface water and shallow groundwater. Surface waters are sensitive to dilution from rainfall and input from external sources. Shallow groundwater, on the other hand, remains geochemically stable during the year. Surface water input from canals derived from draining agricultural areas to the north and east of the Everglades is evident in the ion data. delta(18)O and deltaD values in shallow groundwater remain near the mean of-2.4 and-12 per thousand, respectively. (18)O and D values are enriched in surface water compared with shallow groundwater and fluctuate in sync with those measured in rainfall. The local meteoric water line (LMWL) for precipitation is in close agreement with the global meteoric water line; however, the local evaporation line (LEL) for surface water and shallow groundwater is delta D=5.6 delta(18)O+1.5, a sign that these waters have experienced evaporation. The intercept of the LMWL and LEL indicates that the primary recharge to the Everglades is tropical cyclones or fronts. delta deuterium to delta(18)O excess (D(ex) values) generally reveal two moisture sources for precipitation, a maritime source during the fall and winter (D (ex)>10 per thousand) and a continental-influenced source (D (ex)<10 per thousand) in the spring and summer.


Assuntos
Deutério/análise , Ecossistema , Água Doce/química , Sedimentos Geológicos/química , Isótopos de Oxigênio/análise , Árvores , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Florida , Água Doce/análise , Chuva , Estações do Ano , Fatores de Tempo , Meio Selvagem
6.
Ground Water ; 47(3): 382-90, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19210557

RESUMO

Sequential time-step images acquired using nuclear magnetic resonance (NMR) show the displacement of deuterated water (D(2)O) by fresh water within two limestone samples characterized by a porous and permeable limestone matrix of peloids and ooids. These samples were selected because they have a macropore system representative of some parts of the eogenetic karst limestone of the Biscayne Aquifer in southeastern Florida. The macroporosity, created by the trace fossil Ophiomorpha, is principally well connected and of centimeter scale. These macropores occur in broadly continuous stratiform zones that create preferential flow layers within the hydrogeologic units of the Biscayne. This arrangement of porosity is important because in coastal areas, it could produce a preferential pathway for salt water intrusion. Two experiments were conducted in which samples saturated with D(2)O were placed in acrylic chambers filled with fresh water and examined with NMR. Results reveal a substantial flux of fresh water into the matrix porosity with a simultaneous loss of D(2)O. Specifically, we measured rates upward of 0.001 mL/h/g of sample in static conditions, and perhaps as great as 0.07 mL/h/g of sample when fresh water continuously flows past a sample at velocities less than those found within stressed areas of the Biscayne. These experiments illustrate how fresh water and D(2)O, with different chemical properties, migrate within one type of matrix porosity found in the Biscayne. Furthermore, these experiments are a comparative exercise in the displacement of sea water by fresh water in the matrix of a coastal, karst aquifer since D(2)O has a greater density than fresh water.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Movimentos da Água , Deutério/química , Porosidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA