Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 21(1): 209-225, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30307104

RESUMO

Many questions regarding proteins involved in microbial sulfur metabolism remain unsolved. For sulfur respiration at low pH, the terminal electron acceptor is still unclear. Desulfurella amilsii is a sulfur-reducing bacterium that respires elemental sulfur (S0 ) or thiosulfate, and grows by S0 disproportionation. Due to its versatility, comparative studies on D. amilsii may shed light on microbial sulfur metabolism. Requirement of physical contact between cells and S0 was analyzed. Sulfide production decreased by around 50% when S0 was trapped in dialysis membranes, suggesting that contact between cells and S0 is beneficial, but not strictly needed. Proteome analysis was performed under the aforementioned conditions. A Mo-oxidoreductase suggested from genome analysis to act as sulfur reductase was not detected in any growth condition. Thiosulfate and sulfite reductases showed increased abundance in thiosulfate-reducing cultures, while rhodanese-like sulfurtransferases were highly abundant in all conditions. DsrE and DsrL were abundantly detected during thiosulfate reduction, suggesting a modified mechanism of sulfite reduction. Proteogenomics suggest a different disproportionation pathway from what has been reported. This work points to an important role of rhodaneses in sulfur processes and these proteins should be considered in searches for sulfur metabolism in broader fields like meta-omics.


Assuntos
Deltaproteobacteria/metabolismo , Proteômica , Enxofre/metabolismo , Oxirredução , Proteoma/metabolismo , Sulfitos/metabolismo , Tiossulfatos/metabolismo
2.
Int J Syst Evol Microbiol ; 66(3): 1249-1253, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26704766

RESUMO

A novel acidotolerant and moderately thermophilic sulfur-reducing bacterium was isolated from sediments of the Tinto River (Spain), an extremely acidic environment. Strain TR1T stained Gram-negative, and was obligately anaerobic, non-spore-forming and motile. Cells were short rods (1.5-2 × 0.5-0.7 µm), appearing singly or in pairs. Strain TR1T was catalase-negative and slightly oxidase-positive. Urease activity and indole formation were absent, but gelatin hydrolysis was present. Growth was observed at 20-52 °C with an optimum close to 50 °C, and a pH range of 3-7 with optimum between pH 6 and 6.5. Yeast extract was essential for growth, but extra vitamins were not required. In the presence of sulfur, strain TR1T grew with acetate, formate, lactate, pyruvate, stearate, arginine and H2/CO2. All substrates were completely oxidized and H2S and CO2 were the only metabolic products detected. Besides elemental sulfur, thiosulfate was used as an electron acceptor. The isolate also grew by disproportionation of elemental sulfur. The predominant cellular fatty acids were saturated components: C16 : 0, anteiso-C17 : 0 and C18 : 0. The only quinone component detected was menaquinone MK-7(H2). The G+C content of the genomic DNA was 34 mol%. The isolate is affiliated to the genus Desulfurella of the class Deltaproteobacteria, sharing 97 % 16S rRNA gene sequence similarity with the four species described in the genus Desulfurella. Considering the distinct physiological and phylogenetic characteristics, strain TR1T represents a novel species within the genus Desulfurella, for which the name Desulfurella amilsii sp. nov. is proposed. The type strain is TR1T ( = DSM 29984T = JCM 30680T).


Assuntos
Deltaproteobacteria/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Rios/microbiologia , Bactérias Redutoras de Enxofre/classificação , Ácidos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Ácidos Graxos/química , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha , Enxofre , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/isolamento & purificação , Vitamina K 2/análogos & derivados , Vitamina K 2/química
3.
Environ Sci Technol ; 49(19): 11746-55, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26356416

RESUMO

Microbiological suitability of acidophilic sulfur reduction for metal recovery was explored by enriching sulfur reducers from acidic sediments at low pH (from 2 to 5) with hydrogen, glycerol, methanol and acetate as electron donors at 30 °C. The highest levels of sulfide in the enrichments were detected at pH 3 with hydrogen and pH 4 with acetate. Cloning and sequencing of the 16S rRNA gene showed dominance of the deltaproteobacterial sulfur-reducing genus Desulfurella in all the enrichments and subsequently an acidophilic strain (TR1) was isolated. Strain TR1 grew at a broad range of pH (3-7) and temperature (20-50 °C) and showed good metal tolerance (Pb(2+), Zn(2+), Cu(2+), Ni(2+)), especially for Ni(2+) and Pb(2+), with maximal tolerated concentrations of 0.09 and 0.03 mM, respectively. Different sources of sulfur were tested in the enrichments, from which biosulfur showed fastest growth (doubling time of 1.9 days), followed by colloidal, chemical and sublimated sulfur (doubling times of 2.2, 2.5, and 3.6 days, respectively). Strain TR1's physiological traits make it a good candidate to cope with low pH and high metal concentration in biotechnological processes for treatment of metal-laden acidic streams at low and moderately high temperature.


Assuntos
Ácidos/química , Meio Ambiente , Sedimentos Geológicos/química , Enxofre/química , Biodiversidade , Deltaproteobacteria/efeitos dos fármacos , Deltaproteobacteria/genética , Metais/farmacologia , Filogenia , Rios/química , Espanha , Sulfetos/análise
4.
J Hazard Mater ; 365: 44-52, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30408686

RESUMO

Source-diverted blackwater (toilet wastewater) contains most of the organic energy in domestic wastewater and can be treated anaerobically to maximize energy recovery. Blackwater collected from toilets of different water saving options (e.g., conventional, dual and vacuum toilets) represents different characteristics, but their digestibility has not been discussed. In the present study, blackwater collected from different toilet flushing systems were characterized and compared in terms of chemical composition, digestibility and microbial population development during biochemical methane potential (BMP) tests. Interestingly, the highest BMP (48%) was achieved for conventional/dual flush toilet (5-9 L water/flush) blackwaters, whereas vacuum toilet (0.5-1.2 L water/flush) blackwater BMP was only 34%. Elevated free ammonia (FA) concentration (>205 mg L-1) appeared to contribute to the reduced digestibility of high-water saving toilet (< 1.5 L water/flush) blackwaters. Methanogenesis was the major FA inhibition step in anaerobic digestion as evident by batch kinetics studies; where Methanosarcina methanogens predominate in all blackwater, but ammonia-tolerance methanogens Methanoculleus and Methanomicrobiales were also predominant in blackwater collected from vacuum toilets. This work underlines that overall measures of sustainability also need to consider blackwater characteristics when designing resource recovery based source-diverted sanitary treatment systems.


Assuntos
Aparelho Sanitário , Conservação de Recursos Energéticos , Conservação dos Recursos Hídricos , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Bactérias/genética , Bactérias/isolamento & purificação , Metano/biossíntese , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Águas Residuárias
5.
Front Microbiol ; 8: 222, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28265263

RESUMO

The acidotolerant sulfur reducer Desulfurella amilsii was isolated from sediments of Tinto River, an extremely acidic environment. Its ability to grow in a broad range of pH and to tolerate certain heavy metals offers potential for metal recovery processes. Here we report its high-quality draft genome sequence and compare it to the available genome sequences of other members of Desulfurellaceae family: D. acetivorans. D. multipotens, Hippea maritima. H. alviniae, H. medeae, and H. jasoniae. For most species, pairwise comparisons for average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH) revealed ANI values from 67.5 to 80% and DDH values from 12.9 to 24.2%. D. acetivorans and D. multipotens, however, surpassed the estimated thresholds of species definition for both DDH (98.6%) and ANI (88.1%). Therefore, they should be merged to a single species. Comparative analysis of Desulfurellaceae genomes revealed different gene content for sulfur respiration between Desulfurella and Hippea species. Sulfur reductase is only encoded in D. amilsii, in which it is suggested to play a role in sulfur respiration, especially at low pH. Polysulfide reductase is only encoded in Hippea species; it is likely that this genus uses polysulfide as electron acceptor. Genes encoding thiosulfate reductase are present in all the genomes, but dissimilatory sulfite reductase is only present in Desulfurella species. Thus, thiosulfate respiration via sulfite is only likely in this genus. Although sulfur disproportionation occurs in Desulfurella species, the molecular mechanism behind this process is not yet understood, hampering a genome prediction. The metabolism of acetate in Desulfurella species can occur via the acetyl-CoA synthetase or via acetate kinase in combination with phosphate acetyltransferase, while in Hippea species, it might occur via the acetate kinase. Large differences in gene sets involved in resistance to acidic conditions were not detected among the genomes. Therefore, the regulation of those genes, or a mechanism not yet known, might be responsible for the unique ability of D. amilsii. This is the first report on comparative genomics of sulfur-reducing bacteria, which is valuable to give insight into this poorly understood metabolism, but of great potential for biotechnological purposes and of environmental significance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA