Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 58(3): 447-60, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19727929

RESUMO

To date, the genomes of eight Vibrio strains representing six species and three human pathogens have been fully sequenced and reported. This review compares genomic information revealed from these sequencing efforts and what we can infer about Vibrio biology and ecology from this and related genomic information. The focus of the review is on those attributes that allow the Vibrios to survive and even proliferate in their ocean habitats, which include seawater, plankton, invertebrates, fish, marine mammals, plants, man-made structures (surfaces), and particulate matter. Areas covered include general information about the eight genomes, each of which is distributed over two chromosomes; a discussion of expected and unusual genes found; attachment sites and mechanisms; utilization of particulate and dissolved organic matter; and conclusions.


Assuntos
Genoma Bacteriano , Água do Mar/microbiologia , Vibrio/genética , Microbiologia da Água , Aderência Bacteriana , Quitina/metabolismo , Genes Bacterianos , Oceanos e Mares , Filogenia , Vibrio/classificação
2.
ISME J ; 10(2): 491-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26251870

RESUMO

Predation on bacteria and accompanying mortality are important mechanisms in controlling bacterial populations and recycling of nutrients through the microbial loop. The agents most investigated and seen as responsible for bacterial mortality are viruses and protists. However, a body of evidence suggests that predatory bacteria such as the Halobacteriovorax (formerly Bacteriovorax), a Bdellovibrio-like organism, contribute substantially to bacterial death. Until now, conclusive evidence has been lacking. The goal of this study was to better understand the contributors to bacterial mortality by addressing the poorly understood role of Halobacteriovorax and how their role compares with that of viruses. The results revealed that when a concentrated suspension of Vibrio parahaemolyticus was added into microcosms of estuarine waters, the native Halobacteriovorax were the predators that responded first and most rapidly. Their numbers increased by four orders of magnitude, whereas V. parahaemolyticus prey numbers decreased by three orders of magnitude. In contrast, the extant virus population showed little increase and produced little change in the prey density. An independent experiment with stable isotope probing confirmed that Halobacteriovorax were the predators primarily responsible for the mortality of the V. parahaemolyticus. The results show that Halobacteriovorax have the potential to be significant contributors to bacterial mortality, and in such cases, predation by Halobacteriovorax may be an important mechanism of nutrient recycling. These conclusions add another dimension to bacterial mortality and the recycling of nutrients.


Assuntos
Antibiose , Bdellovibrio/fisiologia , Vibrio parahaemolyticus/crescimento & desenvolvimento , Fenômenos Fisiológicos Virais , Vibrio parahaemolyticus/fisiologia , Vírus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA