Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14269, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652935

RESUMO

Water and nitrogen (N) are the most limiting factors to plant productivity globally, but we lack a critical understanding of how water availability impacts N dynamics in agricultural systems. Plant N requirements are particularly uncertain when water is limited because of the interactive effect of water and N on plant growth, N demand, and plant uptake. We investigated impacts of N application and water availability on plant growth and N movement, including above and belowground growth, water productivity, N productivity, N uptake, N recovery, and greenhouse gas emissions within a semi-arid system in northeastern Colorado, USA. Moderately high soil N availability depressed grain yield and shoot growth under both limited and full water availability, despite no indication of physical toxicity, and came with additional risk of deleterious N losses. Under low N availability, plant N concentrations in aboveground tissues showed greater recovery of N than what was applied in the low N treatments under both full and limited water availability. This enhanced recovery underscores the need to better understand both plant soil foraging and processes governing resource availability under these conditions. Finally, limited water availability reduced N uptake across all N treatments and left 30% more soil nitrate (NO3-) deep in the soil profile at the end of the season than under full water availability. Our results show that plant N needs are not linearly related to water use and emphasize the need for an integrated understanding of water and N interactions, plant foraging for these resources, and the dynamics of processes that make N available to plants.


Assuntos
Agricultura , Zea mays , Transporte Biológico , Solo , Água
2.
J Environ Qual ; 51(5): 877-889, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35436352

RESUMO

Precise water and fertilizer application can increase crop water productivity and reduce agricultural contributions to greenhouse gas (GHG) emissions. Regulated deficit irrigation (DI) and drip fertigation control the amount, location, and timing of water and nutrient application. Yet, few studies have measured GHG emissions under these practices, especially for maize (Zea mays L.). The objective was to quantify N2 O and CO2 emission from DI and full irrigation (FI) within a drip-fertigated maize system in northeastern Colorado. During two growing seasons of measurement, treatments consisted of mild, moderate, and extreme DI and FI. Deficit irrigation was managed based on growth stage so that full evapotranspiration (ET) was met during the yield-sensitive reproductive stage, but less than full crop ET was applied during the late vegetative and maturation growth stages. In the first year, mild DI (90% ET) reduced N2 O emissions by 50% compared with FI. In the second year, compared with FI, moderate DI (69-80% ET) reduced N2 O emissions by 15%, and extreme DI (54-68% ET) reduced N2 O emissions by 40%. Only extreme DI in the second year significantly reduced CO2 emissions (by 30%) compared with FI. Mild DI reduced yield-scaled emissions in the first year, but moderate and extreme DI had similar yield-scaled emissions as FI in the second year. The surface drip fertigation resulted in total GHG emissions that were one-tenth of literature-based measurements from sprinkler-irrigated maize systems. This study illustrates the potential of DI and drip fertigation to reduce N2 O and CO2 emissions in irrigated cropping systems.


Assuntos
Gases de Efeito Estufa , Irrigação Agrícola/métodos , Agricultura/métodos , Dióxido de Carbono/análise , China , Colorado , Fertilizantes/análise , Gases de Efeito Estufa/análise , Óxido Nitroso/análise , Solo , Água , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA