Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37486824

RESUMO

Within the 16SrII phytoplasma group, subgroups A-X have been classified based on restriction fragment length polymorphism of their 16S rRNA gene, and two species have been described, namely 'Candidatus Phytoplasma aurantifolia' and 'Ca. Phytoplasma australasia'. Strains of 16SrII phytoplasmas are detected across a broad geographic range within Africa, Asia, Australia, Europe and North and South America. Historically, all members of the 16SrII group share ≥97.5 % nucleotide sequence identity of their 16S rRNA gene. In this study, we used whole genome sequences to identify the species boundaries within the 16SrII group. Whole genome analyses were done using 42 phytoplasma strains classified into seven 16SrII subgroups, five 16SrII taxa without official 16Sr subgroup classifications, and one 16SrXXV-A phytoplasma strain used as an outgroup taxon. Based on phylogenomic analyses as well as whole genome average nucleotide and average amino acid identity (ANI and AAI), eight distinct 16SrII taxa equivalent to species were identified, six of which are novel descriptions. Strains within the same species had ANI and AAI values of >97 %, and shared ≥80 % of their genomic segments based on the ANI analysis. Species also had distinct biological and/or ecological features. A 16SrII subgroup often represented a distinct species, e.g., the 16SrII-B subgroup members. Members classified within the 16SrII-A, 16SrII-D, and 16SrII-V subgroups as well as strains classified as sweet potato little leaf phytoplasmas fulfilled criteria to be included as members of a single species, but with subspecies-level relationships with each other. The 16SrXXV-A taxon was also described as a novel phytoplasma species and, based on criteria used for other bacterial families, provided evidence that it could be classified as a distinct genus from the 16SrII phytoplasmas. As more phytoplasma genome sequences become available, the classification system of these bacteria can be further refined at the genus, species, and subspecies taxonomic ranks.


Assuntos
Phytoplasma , Humanos , Phytoplasma/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Filogenia , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química
2.
PLoS Pathog ; 16(3): e1007967, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32210479

RESUMO

Flavescence dorée (FD) is a European quarantine grapevine disease transmitted by the Deltocephalinae leafhopper Scaphoideus titanus. Whereas this vector had been introduced from North America, the possible European origin of FD phytoplasma needed to be challenged and correlated with ecological and genetic drivers of FD emergence. For that purpose, a survey of genetic diversity of these phytoplasmas in grapevines, S. titanus, black alders, alder leafhoppers and clematis were conducted in five European countries. Out of 132 map genotypes, only 11 were associated to FD outbreaks, three were detected in clematis, whereas 127 were detected in alder trees, alder leafhoppers or in grapevines out of FD outbreaks. Most of the alder trees were found infected, including 8% with FD genotypes M6, M38 and M50, also present in alders neighboring FD-free vineyards and vineyard-free areas. The Macropsinae Oncopsis alni could transmit genotypes unable to achieve transmission by S. titanus, while the Deltocephalinae Allygus spp. and Orientus ishidae transmitted M38 and M50 that proved to be compatible with S. titanus. Variability of vmpA and vmpB adhesin-like genes clearly discriminated 3 genetic clusters. Cluster Vmp-I grouped genotypes only transmitted by O. alni, while clusters Vmp-II and -III grouped genotypes transmitted by Deltocephalinae leafhoppers. Interestingly, adhesin repeated domains evolved independently in cluster Vmp-I, whereas in clusters Vmp-II and-III showed recent duplications. Latex beads coated with various ratio of VmpA of clusters II and I, showed that cluster II VmpA promoted enhanced adhesion to the Deltocephalinae Euscelidius variegatus epithelial cells and were better retained in both E. variegatus and S. titanus midguts. Our data demonstrate that most FD phytoplasmas are endemic to European alders. Their emergence as grapevine epidemic pathogens appeared restricted to some genetic variants pre-existing in alders, whose compatibility to S. titanus correlates with different vmp gene sequences and VmpA binding properties.


Assuntos
Hemípteros/microbiologia , Insetos Vetores/microbiologia , Phytoplasma/isolamento & purificação , Doenças das Plantas/microbiologia , Vitis/microbiologia , Animais , Bactérias , Proteínas de Bactérias/genética , Epidemias , Europa (Continente)/epidemiologia , Variação Genética , Hemípteros/fisiologia , Filogenia , Phytoplasma/classificação , Phytoplasma/genética , Doenças das Plantas/estatística & dados numéricos
3.
Appl Environ Microbiol ; 85(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770404

RESUMO

To sustain epidemiological studies on coconut lethal yellowing disease (CLYD), a devastating disease in Africa caused by a phytoplasma, we developed a multilocus sequence typing (MLST) scheme for "Candidatus Phytoplasma palmicola" based on eight housekeeping genes. At the continental level, eight different sequence types were identified among 132 "Candidatus Phytoplasma palmicola"-infected coconuts collected in Ghana, Nigeria, and Mozambique, where CLYD epidemics are still very active. "Candidatus Phytoplasma palmicola" appeared to be a bacterium that is subject to strong bottlenecks, reducing the fixation of positively selected beneficial mutations into the bacterial population. This phenomenon, as well as a limited plant host range, might explain the observed country-specific distribution of the eight haplotypes. As an alternative means to increase fitness, bacteria can also undergo genetic exchange; however, no evidence for such recombination events was found for "Candidatus Phytoplasma palmicola." The implications for CLYD epidemiology and prophylactic control are discussed. The usefulness of seven housekeeping genes to investigate the genetic diversity in the genus "Candidatus Phytoplasma" is underlined.IMPORTANCE Coconut is an important crop for both industry and small stakeholders in many intertropical countries. Phytoplasma-associated lethal yellowing-like diseases have become one of the major pests that limit coconut cultivation as they have emerged in different parts of the world. We developed a multilocus sequence typing scheme (MLST) for tracking epidemics of "Ca Phytoplasma palmicola," which is responsible for coconut lethal yellowing disease (CLYD) on the African continent. MLST analysis applied to diseased coconut samples collected in western and eastern African countries also showed the existence of three distinct populations of "Ca Phytoplasma palmicola" with low intrapopulation diversity. The reasons for the observed strong geographic patterns remain to be established but could result from the lethality of CLYD and the dominance of short-distance insect-mediated transmission.


Assuntos
Tipagem de Sequências Multilocus/métodos , Phytoplasma/classificação , Phytoplasma/genética , África , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Genes Essenciais , Variação Genética , Especificidade de Hospedeiro , Insetos/microbiologia , Filogenia , Phytoplasma/isolamento & purificação , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética
4.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878312

RESUMO

Flavescence dorée (FD) is a severe epidemic disease of grapevines caused by FD phytoplasma (FDP) transmitted by the leafhopper vector Scaphoideus titanus. The recent sequencing of the 647-kbp FDP genome highlighted an unusual number of genes encoding ATP-dependent zinc proteases FtsH, which have been linked to variations in the virulence of "Candidatus Phytoplasma mali" strains. The aims of the present study were to predict the FtsH repertoire of FDP, to predict the functional domains and topologies of the encoded proteins in the phytoplasma membrane and to measure the expression profiles in different hosts. Eight complete ftsH genes have been identified in the FDP genome. In addition to ftsH6, which appeared to be the original bacterial ortholog, the other seven gene copies were clustered on a common distinct phylogenetic branch, suggesting intra-genome duplication of ftsH. The expression of these proteins, quantified in plants and insect vectors in natural and experimental pathosystems, appeared to be modulated in a host-dependent manner. Two of the eight FtsH C-tails were predicted by Phobius software to be extracellular and, therefore, in direct contact with the host cellular content. As phytoplasmas cannot synthesize amino acids, our data raised questions regarding the involvement of FtsH in the adaptation to hosts via potentially enhanced recycling of phytoplasma cellular proteins and host protein degradation.


Assuntos
Insetos/metabolismo , Phytoplasma/metabolismo , Plantas/metabolismo , Animais , Genoma de Planta/genética , Software , Virulência
5.
Appl Environ Microbiol ; 84(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30291116

RESUMO

Lavender decline compromises French lavender production, and preliminary data have suggested the involvement of "Candidatus Phytoplasma solani" in the etiology of the disease. In order to evaluate the epidemiological role of "Ca Phytoplasma solani," a 3-year survey was conducted in southeastern France. "Ca Phytoplasma solani" was detected in 19 to 56% of the declining plants, depending on seasons and cultivars, and its prevalence was correlated with symptom severity. Autumn was more favorable than spring for phytoplasma detection, and "Ca Phytoplasma solani" incidence was higher in Lavandula angustifolia than in Lavandula intermedia hybrids. Detection of the phytoplasma fluctuated over months, supporting the chronicity of infection. Three "Ca Phytoplasma solani" secY genotypes, S17, S16, and S14, were the most prevalent in lavender fields and were also detected in nurseries, whereas strains detected in surrounding bindweed and wild carrots were mostly of the S1 and S4 genotypes. This suggests that lavender is the main pathogen reservoir of the epidemic. Adults and nymphs of the planthopper vector Hyalesthes obsoletus were commonly captured in lavender fields and were shown to harbor mainly the prevalent phytoplasma genotypes detected in lavenders. The "Ca Phytoplasma solani" genotype S17 was transmitted to Catharanthus roseus periwinkle by naturally infected H. obsoletus Finally, the inventory of the bacterial community of declining lavenders that tested negative for "Ca Phytoplasma solani" by 16S rRNA deep sequencing ruled out the involvement of other phloem-limited bacterial pathogens.IMPORTANCE The etiology and main pathways for the spread of lavender decline, an infectious disease affecting French lavender production since the 1960s, have remained unclear, hampering the development of efficient control strategies. An extensive survey of lavender fields led to the conclusion that "Candidatus Phytoplasma solani" was chronically infecting declining lavenders and was associated with large infectious populations of Hyalesthes obsoletus planthoppers living on the crop itself. Lavender appeared to be the main reservoir host for lavender-specific phytoplasma strains, an unusual feature for this phytoplasma, which usually propagates from reservoir weeds to various economically important crops. These results point out the necessity to protect young lavender fields from the initial phytoplasma inoculum coming from surrounding lavender fields or from infected nurseries and to promote agricultural practices that reduce the development of H. obsoletus vector populations.


Assuntos
Lavandula/microbiologia , Phytoplasma/classificação , Phytoplasma/patogenicidade , Doenças das Plantas/microbiologia , Animais , França , Genótipo , Técnicas de Genotipagem , Hemípteros/microbiologia , Epidemiologia Molecular , Filogenia , Phytoplasma/genética , Phytoplasma/isolamento & purificação , Prevalência , RNA Ribossômico 16S/genética , Vinca/microbiologia
6.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29439985

RESUMO

Phytoplasmas are uncultivated plant pathogens and cell wall-less bacteria and are transmitted from plant to plant by hemipteran insects. The phytoplasma's circulative propagative cycle in insects requires the crossing of the midgut and salivary glands, and primary adhesion to cells is an initial step toward the invasion process. The flavescence dorée (FD) phytoplasma possesses a set of variable membrane proteins (Vmps) exposed on its surface, and this pathogen is suspected to interact with insect cells. The results showed that VmpA is expressed by the flavescence dorée phytoplasma present in the midgut and salivary glands. Phytoplasmas cannot be cultivated at present, and no mutant can be produced to investigate the putative role of Vmps in the adhesion of phytoplasma to insect cells. To overcome this difficulty, we engineered the Spiroplasma citri mutant G/6, which lacks the ScARP adhesins, for VmpA expression and used VmpA-coated fluorescent beads to determine if VmpA acts as an adhesin in ex vivo adhesion assays and in vivo ingestion assays. VmpA specifically interacted with Euscelidiusvariegatus insect cells in culture and promoted the retention of VmpA-coated beads to the midgut of E. variegatus In this latest case, VmpA-coated fluorescent beads were localized and embedded in the perimicrovillar membrane of the insect midgut. Thus, VmpA functions as an adhesin that could be essential in the colonization of the insect by the FD phytoplasmas.IMPORTANCE Phytoplasmas infect a wide variety of plants, ranging from wild plants to cultivated species, and are transmitted by different leafhoppers, planthoppers, and psyllids. The specificity of the phytoplasma-insect vector interaction has a major impact on the phytoplasma plant host range. As entry into insect cells is an obligate process for phytoplasma transmission, the bacterial adhesion to insect cells is a key step. Thus, studying surface-exposed proteins of phytoplasma will help to identify the adhesins implicated in the specific recognition of insect vectors. In this study, it is shown that the membrane protein VmpA of the flavescence dorée (FD) phytoplasma acts as an adhesin that is able to interact with cells of Euscelidiusvariegatus, the experimental vector of the FD phytoplasma.


Assuntos
Adesinas Bacterianas/genética , Aderência Bacteriana/fisiologia , Hemípteros/microbiologia , Proteínas de Membrana/genética , Phytoplasma/fisiologia , Adesinas Bacterianas/metabolismo , Animais , Células Epiteliais , Trato Gastrointestinal/microbiologia , Proteínas de Membrana/metabolismo , Microrganismos Geneticamente Modificados , Phytoplasma/genética , Doenças das Plantas/microbiologia , Glândulas Salivares/microbiologia
7.
BMC Microbiol ; 15: 82, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25879952

RESUMO

BACKGROUND: Flavescence dorée (FD) of grapevine is a phloem bacterial disease that threatens European vineyards. The disease is associated with a non-cultivable mollicute, a phytoplasma that is transmitted by the grapevine leafhopper Scaphoideus titanus in a persistent, propagative manner. The specificity of insect transmission is presumably mediated through interactions between the host tissues and phytoplasma surface proteins comprising the so-called variable membrane proteins (Vmps). Plant spiroplasmas and phytoplasmas share the same ecological niches, the phloem sieve elements of host plants and the hemocoel of insect vectors. Unlike phytoplasmas, however, spiroplasmas, and Spiroplasma citri in particular, can be grown in cell-free media and genetically engineered. As a new approach for studying phytoplasmas-insect cell interactions, we sought to mimic phytoplasmas through the construction of recombinant spiroplasmas exhibiting FD phytoplasma Vmps at the cell surface. RESULTS: Here, we report the expression of the FD phytoplasma VmpA in S. citri. Transformation of S. citri with plasmid vectors in which the vmpA coding sequence was under the control of the S. citri tuf gene promoter resulted in higher accumulation of VmpA than with the native promoter. Expression of VmpA at the spiroplasma surface was achieved by fusing the vmpA coding sequence to the signal peptide sequence of the S. citri adhesin ScARP3d, as revealed by direct colony immunoblotting and immunogold labelling electron microscopy. Anchoring of VmpA to the spiroplasma membrane was further demonstrated by Triton X-114 protein partitioning and Western immunoblotting. Using the same strategy, the secretion of free, functionally active ß-lactamase (used as a model protein) into the culture medium by recombinant spiroplasmas was achieved. CONCLUSIONS: Construction of recombinant spiroplasmas harbouring the FD phytoplasma variable membrane protein VmpA at their surface was achieved, which provides a new biological approach for studying interactions of phytoplasma surface proteins with host cells. Likewise, the secretion of functional ß-lactamase by recombinant spiroplasmas established the considerable promise of the S. citri expression system for delivering phytoplasma effector proteins into host cells.


Assuntos
Adesinas Bacterianas/genética , Proteínas de Bactérias/genética , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Phytoplasma/genética , Proteínas Recombinantes de Fusão/genética , Spiroplasma citri/genética , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Expressão Gênica , Octoxinol , Phytoplasma/metabolismo , Phytoplasma/patogenicidade , Doenças das Plantas/microbiologia , Plasmídeos/química , Plasmídeos/metabolismo , Polietilenoglicóis/química , Regiões Promotoras Genéticas , Engenharia de Proteínas , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes de Fusão/metabolismo , Spiroplasma citri/metabolismo , Transformação Bacteriana , Vitis/microbiologia , beta-Lactamases/biossíntese , beta-Lactamases/metabolismo
8.
Mol Plant Microbe Interact ; 27(2): 163-76, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24200077

RESUMO

Liberibacter spp. form a Rhizobiaceae clade of phloem-limited pathogens of limited host range. Two obligately parasitic species have been sequenced: 'Candidatus Liberibacter asiaticus', which causes citrus huanglongbing (HLB) worldwide, and 'Ca. L. solanacearum', which causes potato "zebra chip" disease. A third (proposed) species, Liberibacter crescens, was isolated from mountain papaya, grown in axenic culture, and sequenced. In an effort to identify common host determinants, the complete genomic DNA sequence of a second HLB species, 'Ca. L. americanus' strain 'São Paulo' was determined. The circular genome of 1,195,201 bp had an average 31.12% GC content and 983 predicted protein encoding genes, 800 (81.4%) of which had a predicted function. There were 658 genes common to all sequenced Liberibacter spp. and only 8 genes common to 'Ca. L. americanus' and 'Ca. L. asiaticus' but not found in 'Ca. L. solanacearum'. Surprisingly, most of the lipopolysaccharide biosynthetic genes were missing from the 'Ca. L. americanus' genome, as well as OmpA and a key regulator of flagellin, all indicating a 'Ca. L. americanus' strategy of avoiding production of major pathogen-associated molecular patterns present in 'Ca. L. asiaticus' and 'Ca. L. solanacearum'. As with 'Ca. L. asiaticus', one of two 'Ca. L. americanus' prophages replicated as an excision plasmid and carried potential lysogenic conversion genes that appeared fragmentary or degenerated in 'Ca. L. solanacearum'.


Assuntos
Carica/microbiologia , Cromossomos Bacterianos/genética , Citrus/microbiologia , Genoma Bacteriano/genética , Doenças das Plantas/microbiologia , Rhizobiaceae/genética , Proteínas de Bactérias/genética , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , Genômica , Lipopolissacarídeos/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Plasmídeos/genética , Análise de Sequência de DNA , Especificidade da Espécie
9.
BMC Genomics ; 15: 1088, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25495145

RESUMO

BACKGROUND: The phytoplasma-borne disease flavescence dorée is still a threat to European viticulture, despite mandatory control measures and prophylaxis against the leafhopper vector. Given the economic importance of grapevine, it is essential to find alternative strategies to contain the spread, in order to possibly reduce the current use of harmful insecticides. Further studies of the pathogen, the vector and the mechanisms of phytoplasma-host interactions could improve our understanding of the disease. In this work, RNA-Seq technology followed by three de novo assembly strategies was used to provide the first comprehensive transcriptomics landscape of flavescence dorée phytoplasma (FD) infecting field-grown Vitis vinifera leaves. RESULTS: With an average of 8300 FD-mapped reads per library, we assembled 347 sequences, corresponding to 215 annotated genes, and identified 10 previously unannotated genes, 15 polycistronic transcripts and three genes supposedly localized in the gaps of the FD92 draft genome. Furthermore, we improved the annotation of 44 genes with the addition of 5'/3' untranslated regions. Functional classification revealed that the most expressed genes were either related to translation and protein biosynthesis or hypothetical proteins with unknown function. Some of these hypothetical proteins were predicted to be secreted, so they could be bacterial effectors with a potential role in modulating the interaction with the host plant. Interestingly, qRT-PCR validation of the RNA-Seq expression values confirmed that a group II intron represented the FD genomic region with the highest expression during grapevine infection. This mobile element may contribute to the genomic plasticity that is necessary for the phytoplasma to increase its fitness and endorse host-adaptive strategies. CONCLUSIONS: The RNA-Seq technology was successfully applied for the first time to analyse the FD global transcriptome profile during grapevine infection. Our results provided new insights into the transcriptional organization and gene structure of FD. This may represent the starting point for the application of high-throughput sequencing technologies to study differential expression in FD and in other phytoplasmas with an unprecedented resolution.


Assuntos
Phytoplasma/genética , RNA Bacteriano/metabolismo , Vitis/microbiologia , Proteínas de Bactérias/genética , Genoma Bacteriano , Anotação de Sequência Molecular , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , RNA Bacteriano/química , RNA Bacteriano/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Transcriptoma , Vitis/genética
10.
Front Plant Sci ; 14: 1217425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469777

RESUMO

Flavescence dorée (FD) phytoplasma from 16SrV-C and -D subgroups cause severe damage to grapevines throughout Europe. This phytoplasma is transmitted from grapevine to grapevine by the sap-sucking leafhopper Scaphoideus titanus. European black alder and clematis serve as perennial plant reservoirs for 16SrV-C phytoplasma strains, and their host range has recently been extended to hazelnuts. In Slovenia, hazelnut orchards are declining due to 16SrV phytoplasma infections, where large populations of the non-autochthonous leafhopper Orientus ishidae have been observed. To better characterise the phytoplasma-induced decline of hazelnut and possible transmission fluxes between these orchards and grapevine, genetic diversity of 16SrV phytoplasmas in grapevine, hazelnut and leafhoppers was monitored from 2017 to 2022. The nucleotide sequence analysis was based on the map gene. The most prevalent map genotype in grapevine in all wine-growing regions of Slovenia was M54, which accounted for 84% of the 176 grapevines tested. Besides M54, other epidemic genotypes with lower frequency were M38 (6%), M51 (3%), M50 (2%) and M122 (1%). M38, M50 and M122 were also detected in infected cultivated hazelnuts and in specimens of O. ishidae leafhopper caught in declining hazelnut orchards. It suggests that this polyphagous vector could be responsible for phytoplasma infection in hazelnut orchards and possibly for some phytoplasma exchanges between hazelnuts and grapevine. We hereby describe new genotypes: M158 in grapevine as well as four never reported genotypes M159 to M162 in hazelnut. Of these four genotypes in hazelnut, one (M160) was also detected in O. ishidae. Analysis of additional genes of the new genotypes allowed us to assign them to the VmpA-III cluster, which corresponds to the 16SrV-C strains previously shown to be compatible with S. titanus transmission.

11.
Sci Rep ; 13(1): 2211, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750707

RESUMO

To perform its propagative and circulative cycle into its insect vector, the flavescence dorée phytoplasma invades different cell types. Clathrin-mediated endocytosis is used by a wide range of bacteria to infect eukaryote cells. Among the insect proteins interacting with the phytoplasma adhesin VmpA, we identified the adaptor protein complex AP-1 and AP-2 suggesting that phytoplasmas could enter the insect cells via clathrin-mediated endocytosis. By infection assays of insect cells in culture, we showed that phytoplasmas entry into Drosophila S2 cells was more efficient than infection of the Euva cell line developed from the insect vector Euscelidius variegatus. Chlorpromazine, cytochalasin D and knockdown of clathrin heavy chain (chc) gene expression using RNA interference inhibited entry of phytoplasmas into S2 cells. During invasion of S2 cells, phytoplasmas were observed very closed to recombinant GFP-labelled clathrin light chain. To verify the role of clathrin in the insect colonization by phytoplasmas, RNAi was performed via artificial feeding of chc dsRNA by the vector E. variegatus. This decreased the expression of chc gene in the midgut and heads of E. variegatus. The chc lower expression correlated to a decreased of midgut and salivary gland cells colonization after the insects had ingested phytoplasmas from infected plants. In conclusion, results indicate that clathrin is important for the FD phytoplasma to enter insect cells and colonize its insect vector.


Assuntos
Hemípteros , Phytoplasma , Animais , Phytoplasma/genética , Adesinas Bacterianas/metabolismo , Hemípteros/microbiologia , Endocitose , Insetos Vetores/microbiologia , Doenças das Plantas/microbiologia
13.
Front Cell Infect Microbiol ; 13: 1289100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029232

RESUMO

Introduction: The adhesion of flavescence dorée phytoplasma to the midgut epithelium cells of their insect vectors is partially mediated by the variable membrane protein A (VmpA), an adhesin which shows lectin properties. In order to identify the insect receptor for VmpA, we identified Euscelidius variegatus cell proteins interacting with recombinant VmpA-His6. Methods: The E. variegatus proteins were identified by mass spectrometry analysis of VmpA-E. variegatus protein complexes formed upon in vitro interaction assays. To assess their impact in VmpA binding, we reduced the expression of the candidate genes on E. variegatus cells in culture by dsRNA-mediated RNAi. The effect of candidate gene knockdown on VmpA binding was measured by the capacity of E. variegatus cells to bind VmpA-coated fluorescent beads. Results and discussion: There were 13 candidate proteins possessing potential N-glycosylation sites and predicted transmembrane domains selected. The decrease of expression of an unknown transmembrane protein with leucine-rich repeat domains (uk1_LRR) was correlated with the decreased adhesion of VmpA beads to E. variegatus cells. The uk1_LRR was more expressed in digestive tubes than salivary glands of E. variegatus. The protein uk1_LRR could be implicated in the binding with VmpA in the early stages of insect infection following phytoplasmas ingestion.


Assuntos
Hemípteros , Phytoplasma , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Phytoplasma/genética , Phytoplasma/metabolismo , Proteína Estafilocócica A , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Hemípteros/metabolismo , Insetos Vetores , Doenças das Plantas
14.
Microbiology (Reading) ; 157(Pt 2): 438-450, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20847008

RESUMO

The genetic diversity of three temperate fruit tree phytoplasmas 'Candidatus Phytoplasma prunorum', 'Ca. P. mali' and 'Ca. P. pyri' has been established by multilocus sequence analysis. Among the four genetic loci used, the genes imp and aceF distinguished 30 and 24 genotypes, respectively, and showed the highest variability. Percentage of substitution for imp ranged from 50 to 68 % according to species. Percentage of substitution varied between 9 and 12 % for aceF, whereas it was between 5 and 6 % for pnp and secY. In the case of 'Ca P. prunorum' the three most prevalent aceF genotypes were detected in both plants and insect vectors, confirming that the prevalent isolates are propagated by insects. The four isolates known to be hypo-virulent had the same aceF sequence, indicating a possible monophyletic origin. Haplotype network reconstructed by eBURST revealed that among the 34 haplotypes of 'Ca. P. prunorum', the four hypo-virulent isolates also grouped together in the same clade. Genotyping of some Spanish and Azerbaijanese 'Ca. P. pyri' isolates showed that they shared some alleles with 'Ca. P. prunorum', supporting for the first time to our knowledge, the existence of inter-species recombination between these two species.


Assuntos
Variação Genética , Tipagem de Sequências Multilocus , Phytoplasma/genética , Prunus/microbiologia , Recombinação Genética , Animais , Passeio de Cromossomo/métodos , DNA Bacteriano/genética , Biblioteca Gênica , Genes Bacterianos , Genótipo , Geografia , Insetos/microbiologia , Hibridização de Ácido Nucleico/métodos , Phytoplasma/classificação , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Árvores/microbiologia
15.
Int J Syst Evol Microbiol ; 61(Pt 9): 2129-2134, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20889771

RESUMO

In addition to the grapevine flavescence dorée phytoplasmas, other members of taxonomic group 16SrV phytoplasmas infect grapevines, alders and species of the genera Clematis and Rubus in Europe. In order to investigate which phytoplasmas constitute discrete, species-level taxa, several strains were analysed by comparing their 16S rRNA gene sequences and a set of five housekeeping genes. Whereas 16S rRNA gene sequence similarity values were >97.5 %, the proposed threshold to distinguish two 'Candidatus Phytoplasma' taxa, phylogenetic analysis of the combined sequences of the tuf, rplV-rpsC, rplF-rplR, map and uvrB-degV genetic loci showed that two discrete phylogenetic clusters could be clearly distinguished. The first cluster grouped flavescence dorée (FD) phytoplasmas, alder yellows (AldY) phytoplasmas, Clematis (CL) phytoplasmas and the Palatinate grapevine yellows (PGY) phytoplasmas. The second cluster comprised Rubus stunt (RS) phytoplasmas. In addition to the specificity of the insect vector, the Rubus stunt phytoplasma contained specific sequences in the 16S rRNA gene. Hence, the Rubus stunt phytoplasma 16S rRNA gene was sufficiently differentiated to represent a novel putative taxon: 'Candidatus Phytoplasma rubi'.


Assuntos
Variação Genética , Phytoplasma/classificação , Phytoplasma/genética , Alnus/microbiologia , Proteínas de Bactérias/genética , Clematis/microbiologia , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Europa (Continente) , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Rosaceae/microbiologia , Análise de Sequência de DNA , Vitis/microbiologia
16.
Front Microbiol ; 12: 661524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841387

RESUMO

Although phytoplasma studies are still hampered by the lack of axenic cultivation methods, the availability of genome sequences allowed dramatic advances in the characterization of the virulence mechanisms deployed by phytoplasmas, and highlighted the detection of signal peptides as a crucial step to identify effectors secreted by phytoplasmas. However, various signal peptide prediction methods have been used to mine phytoplasma genomes, and no general evaluation of these methods is available so far for phytoplasma sequences. In this work, we compared the prediction performance of SignalP versions 3.0, 4.0, 4.1, 5.0 and Phobius on several sequence datasets originating from all deposited phytoplasma sequences. SignalP 4.1 with specific parameters showed the most exhaustive and consistent prediction ability. However, the configuration of SignalP 4.1 for increased sensitivity induced a much higher rate of false positives on transmembrane domains located at N-terminus. Moreover, sensitive signal peptide predictions could similarly be achieved by the transmembrane domain prediction ability of TMHMM and Phobius, due to the relatedness between signal peptides and transmembrane regions. Beyond the results presented herein, the datasets assembled in this study form a valuable benchmark to compare and evaluate signal peptide predictors in a field where experimental evidence of secretion is scarce. Additionally, this study illustrates the utility of comparative genomics to strengthen confidence in bioinformatic predictions.

17.
Insects ; 12(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499057

RESUMO

The genus Arsenophonus represents one of the most widespread clades of insect endosymbionts, including reproductive manipulators and bacteriocyte-associated primary endosymbionts. Two strains belonging to the Arsenophonus clade have been identified as insect-vectored plant pathogens of strawberry and sugar beet. The bacteria accumulate in the phloem of infected plants, ultimately causing leaf yellows and necrosis. These symbionts therefore represent excellent model systems to investigate the evolutionary transition from a purely insect-associated endosymbiont towards an insect-vectored phytopathogen. Using quantitative PCR and transmission electron microscopy, we demonstrate that 'Candidatus Phlomobacter fragariae', bacterial symbiont of the planthopper Cixius wagneri and the causative agent of Strawberry Marginal Chlorosis disease, can be transmitted from an infected strawberry plant to multiple daughter plants through stolons. Stolons are horizontally growing stems enabling the nutrient provisioning of daughter plants during their early growth phase. Our results show that Phlomobacter was abundant in the phloem sieve elements of stolons and was efficiently transmitted to daughter plants, which rapidly developed disease symptoms. From an evolutionary perspective, Phlomobacter is, therefore, not only able to survive within the plant after transmission by the insect vector, but can even be transmitted to new plant generations, independently from its ancestral insect host.

18.
Sci Rep ; 11(1): 11222, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045641

RESUMO

The flavescence dorée phytoplasma undergoes a propagative cycle in its insect vectors by first interacting with the insect cell surfaces, primarily in the midgut lumen and subsequently in the salivary glands. Adhesion of flavescence dorée phytoplasma to insect cells is mediated by the adhesin VmpA. We hypothesize that VmpA may have lectin-like activity, similar to several adhesins of bacteria that invade the insect gut. We first demonstrated that the luminal surface of the midgut and the basal surface of the salivary gland cells of the natural vector Scaphoideus titanus and those of the experimental vector Euscelidius variegatus were differentially glycosylated. Using ELISA, inhibition and competitive adhesion assays, and protein overlay assays in the Euva-6 insect cell line, we showed that the protein VmpA binds insect proteins in a lectin-like manner. In conclusion, the results of this study indicate that N-acetylglucosamine and mannose present on the surfaces of the midgut and salivary glands serve as recognition sites for the phytoplasma adhesin VmpA.


Assuntos
Adesinas Bacterianas/metabolismo , Insetos Vetores/microbiologia , Lectinas/metabolismo , Phytoplasma/fisiologia , Animais , Glicosilação , Proteínas de Insetos/metabolismo
19.
Appl Environ Microbiol ; 76(11): 3420-6, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20363791

RESUMO

The assembly of 20,000 sequencing reads obtained from shotgun and chromosome-specific libraries of the Spiroplasma citri genome yielded 77 chromosomal contigs totaling 1,674 kbp (92%) of the 1,820-kbp chromosome. The largest chromosomal contigs were positioned on the physical and genetic maps constructed from pulsed-field gel electrophoresis and Southern blot hybridizations. Thirty-eight contigs were annotated, resulting in 1,908 predicted coding sequences (CDS) representing an overall coding density of only 74%. Cellular processes, cell metabolism, and structural-element CDS account for 29% of the coding capacity, CDS of external origin such as viruses and mobile elements account for 24% of the coding capacity, and CDS of unknown function account for 47% of the coding capacity. Among these, 21% of the CDS group into 63 paralog families. The organization of these paralogs into conserved blocks suggests that they represent potential mobile units. Phage-related sequences were particularly abundant and include plectrovirus SpV1 and SVGII3 and lambda-like SpV2 sequences. Sixty-nine copies of transposases belonging to four insertion sequence (IS) families (IS30, IS481, IS3, and ISNCY) were detected. Similarity analyses showed that 21% of chromosomal CDS were truncated compared to their bacterial orthologs. Transmembrane domains, including signal peptides, were predicted for 599 CDS, of which 58 were putative lipoproteins. S. citri has a Sec-dependent protein export pathway. Eighty-four CDS were assigned to transport, such as phosphoenolpyruvate phosphotransferase systems (PTS), the ATP binding cassette (ABC), and other transporters. Besides glycolytic and ATP synthesis pathways, it is noteworthy that S. citri possesses a nearly complete pathway for the biosynthesis of a terpenoid.


Assuntos
Bacteriófagos/genética , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/virologia , Evolução Molecular , Recombinação Genética , Spiroplasma citri/genética , Spiroplasma citri/virologia , Proteínas de Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Sequências Repetitivas Dispersas , Dados de Sequência Molecular , Fases de Leitura Aberta , Análise de Sequência de DNA , Deleção de Sequência , Transposases/genética
20.
Appl Environ Microbiol ; 75(9): 2951-7, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19270150

RESUMO

Studies of phytoplasma-insect vector interactions and epidemiological surveys of plant yellows associated with the stolbur phytoplasma (StolP) require the identification of relevant candidate genes and typing markers. A recent StolP genome survey identified a partial coding sequence, SR01H10, having no homologue in the "Candidatus Phytoplasma asteris" genome but sharing low similarity with a variable surface protein of animal mycoplasmas. The complete coding sequence and its genetic environment have been fully characterized by chromosome walking. The vmp1 gene encodes a protein of 557 amino acids predicted to possess a putative signal peptide and a potential C-terminal transmembrane domain. The mature 57.8-kDa VMP1 protein is likely to be anchored in the phytoplasma membrane with a large N-terminal hydrophilic part exposed to the phytoplasma cell surface. Southern blotting experiments detected multiple sequences homologous to vmp1 in the genomes of nine StolP isolates. vmp1 is variable in size, and eight different vmp1 RsaI restriction fragment length polymorphism types could be distinguished among 12 StolP isolates. Comparison of vmp1 sequences revealed that insertions in largest forms of the gene encode an additional copy of a repeated domain of 81 amino acids, while variations in 11-bp repeats led to gene disruption in two StolP isolates. vmp1 appeared to be much more variable than three housekeeping genes involved in protein translation, maturation, and secretion and may therefore be involved in phytoplasma-host interactions.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Membrana/genética , Phytoplasma/genética , Polimorfismo Genético , Proteínas de Bactérias/química , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Membrana/química , Dados de Sequência Molecular , Peso Molecular , Fases de Leitura Aberta , Filogenia , Sinais Direcionadores de Proteínas , Análise de Sequência de DNA , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA